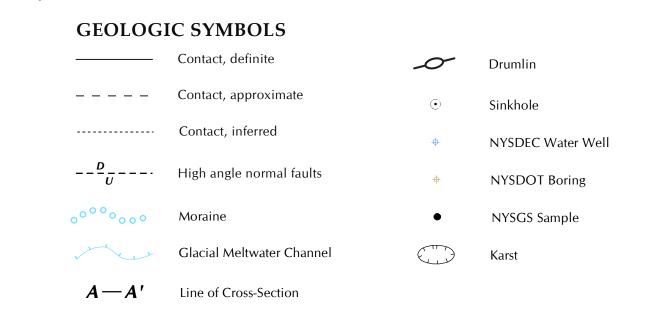
New York State Geological Survey New York State Museum Mark Schaming, Director 574790^{.744} North American Datum of 1983 and C.A. Ver Straeten, E.J. Stander, T.D. Engle, 2013 (bedrock) Elevation contours, hygrology, and planimetry layers from the Digital data and cartography, B. Bird, 2017 New York State DOT Raster Quadrangle separates 1993, USGS contour dates 1944. Topographic map symbols can be found at http://pubs.usgs.gov/gip/TopographicMapSymbol Contour interval 10 feet topomapsymbols.pdf UTM grid convergence (GI Magnetic declination from the NOAA online Declination Calculate http://www.ngdc.noaa.gov/geomag-web/#declination and 2017 magnetic declination (MN

GEOLOGY OF THE ALTAMONT QUADRANGLE, ALBANY AND SCHENECTADY COUNTY, NEW YORK

James Leone, Andrew Kozlowski, Brian Bird, Charels Ver Straeton, Edward, Stander, and Thomas D. Engle

James Leone, Andrew Kozlowski, and Brian Bird (Surficial Geology) Charels Ver Straeton, Edward, Stander, and Thomas D. Engle (Bedrock Geology)

Supported in part by the U.S Geological Survey Cooperative Agreement Number G16AC00293 National Cooperative Geologic Mapping Program (STATEMAP)



LATE SILURIAN PERIOD Manlius and Rondout Formations (uSm-r) Limestones, dolostones, and minor shales. These units form the lower portion of the Helderberg escarpment cliffs, well seen along the Indian Ladder Trail at Thacher State Park. The Manlius and Rondout Formations were deposited on the margin of the Silurian-Devonian seaway, in tideinfluenced environments. Combined thickness of the units were measured at Thacher Park at approximately 57 feet (17.4 meters). 1) Manlius Formation (Thacher Member)

Generally light gray-colored, fine-grained limestones (micrite, wackestone), with buff to yellow weathering dolostone intervals, and reef layers of stromatoporoid sponges. The thinly-laminated dolostones are most notable in the recessed "upper bear path" in the cliffs at Thacher State Park. The Manlius Limestone is 52 feet (15.8 meters) thick at Thacher State Park (Rickard, 1962). The Manlius Formation was deposited in tidal environments on the margin of the Devonian seaway, between just above to a little below low tides. Stromatoporoid reefs, indicated by chaoticappearing layering in the middle to upper Manlius Formation, formed in shallow depths slightly below low tide.

2) Rondout Formation Fine-grained, blue to yellowish-brown limestone, dolostone and shale, with greenish-gray sandy, pyritic shale in its lower part. Rickard (1962) reported five to seven feet 1.5 to 2.1 meters) of Rondout on the Altamont quadrangle; this includes the lower sandy, pyritic shale that Goldring and Cook (1935) had interpreted to be the Brayman Shale, which is found west of the Altamont quadrangle. The Rondout Formation is best seen as the deeply recessed interval along the Indian Ladder Trail at Minelot Falls, at Thacher State Park. The Rondout Formation was chiefly deposited in supratidal environments, just above high tides.

LATE ORDOVICIAN PERIOD Schenectady Formation (uOSch) Sandstones and black to gray sandy to clay-rich shales, thin to massive layered, and commonly interbedded. The proportion of sandstone to shale varies vertically through the formation. Goldring and Cook (1935) estimated 1800 to 2000 feet (548 to 610 meters) for the Schenectady Formation on the Altamont quadrangle, succeeded by 410 feet (125 meters) of strata assigned to the "Indian Ladder Beds". On this map, these

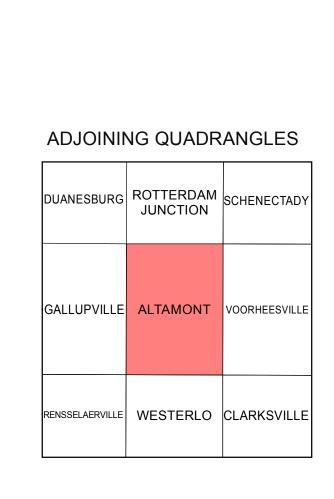
OVERVIEW: STRUCTURAL GEOLOGY OF THE ALTAMONT OUADRANGLE BEDROCK

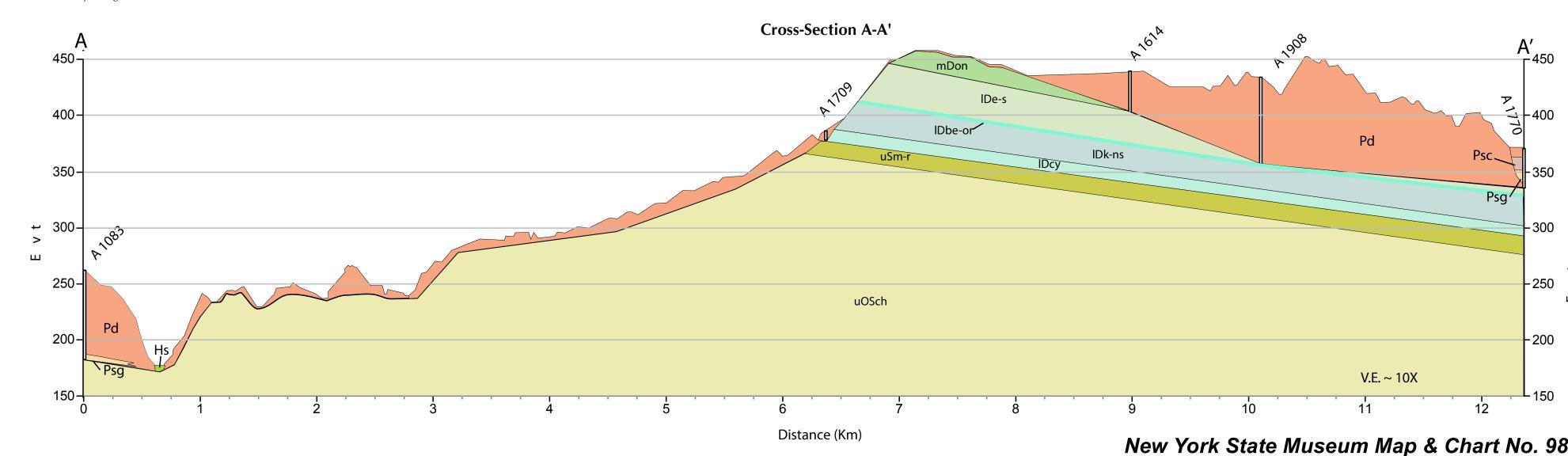
While the vast majority of units within the Altamont quadrangle dip approximately 1.5 degrees (ca. 160 feet per mile) to the southsouthwest, the region is not without its deformational component. The Helderberg hills south of Altamont mark the northernmost exposure of the Hudson Valley fold/thrust belt, and display several major bedding plane detachment structures. Thrust faults and splays have been recognized in the lower Mount Marion through Esopus, Becraft, and New Scotland formations within and outside of the Altamont Quadrangle, with the most obvious examples found along Minelot Creek in Thacher State Park and at the base of the Becraft Limestone, where up to 15 feet (4.6 meters) of thickness is locally absent.

Apart from these decollement structures, a number of high angle normal faults were observed within the Schenectady Formation perpendicular to the trace of the Bozenkill Creek. Displacement along each fault was generally small (on the order of 5-30 cm), but taken together added up to several meters of downward displacement to the Northwest. The fault planes observed along the river's edge tended to anastomose, and may be of relatively recent vintage as the brecciated was entirely unconsolidated.

OVERVIEW: KARST ON THE ALTAMONT QUADRANGLE

Karst is a landform created by the dissolving of the underlying bedrock. Evidence of karst includes the presence of caves, sinkholes, disappearing streams, solutionally-enlarged joints, and springs; and by the general absence of surface streams. On the Altamont quadrangle karst is found in the Kalkberg, Coeymans, and Manlius Limestones; the Becraft Limestone; and the Onondaga Limestone. The longest caves are found in the Coeymans and Manlius, but considerable karst is found in all listed Good examples may be found in John Boyd Thacher State Park. Caves and springs are seen along the Indian Ladder trail. The best sinkholes are found south of Beaverdam Road at the contact of the Union Springs Formation and the underlying Onondaga, and along parts of the Long Path north of the park office. One thing that is not a sinkhole is Thompsons Lake.


Goldring. W., 1933 (reprinted 1997), Guide to the Geology of John Boyd Thacher State Park (Indian Ladder Region) and Vicinity. New York State Museum Handbook 14, 112 pages (32 pages in reprinted version). Goldring, W., and Cook, J.H., 1935, Geology of the Berne Quadrangle, with a Chapter on Glacial Geology. New York State Museum Bulletin 303, 238 pages. Rickard, L.V., 1962, Late Cayugan (Upper Silurian) and Helderbergian (Lower Devonian) Stratigraphy in New York. New York State Museum Bulletin 386, 157 pages. Oliver, W. A., Jr. 1956. Stratigraphy of the Onondaga Limestone in eastern New York. Bulletin of the Geological Society of


> This geologic map was funded in part by the USGS National Cooperative Geologic Mapping Program. A award number **G16AC00293** in the year 2016.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily presenting the official policies, either expressed or implied, of the U.S. Government.

While every effort has been made to ensure the integrity of this digital map and the factual data upon which it is based, the New York State Education Department ("NYSED") makes no representation or warranty, expressed or implied, with respect to its accuracy, completeness, or usefulness for any particular purpose or scale. NYSED assumes no liability for damages resulting from the use of any information, apparatus, method, or process disclosed in this map and text, and urges independent site-specific verification of the information contained herein. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by NYSED.

ISBN:0097-3793; ISBN:978-1-55557-322-5

