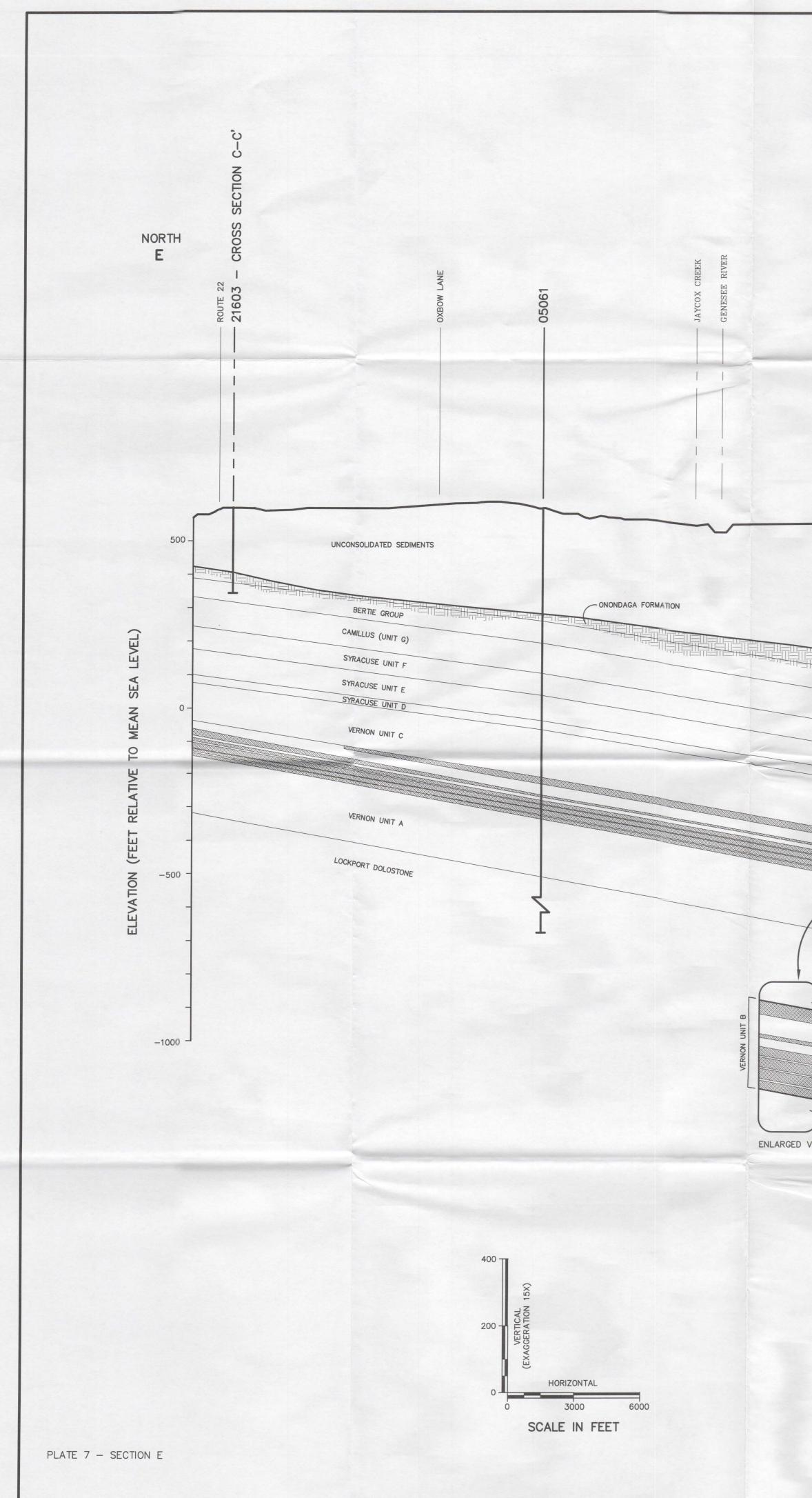
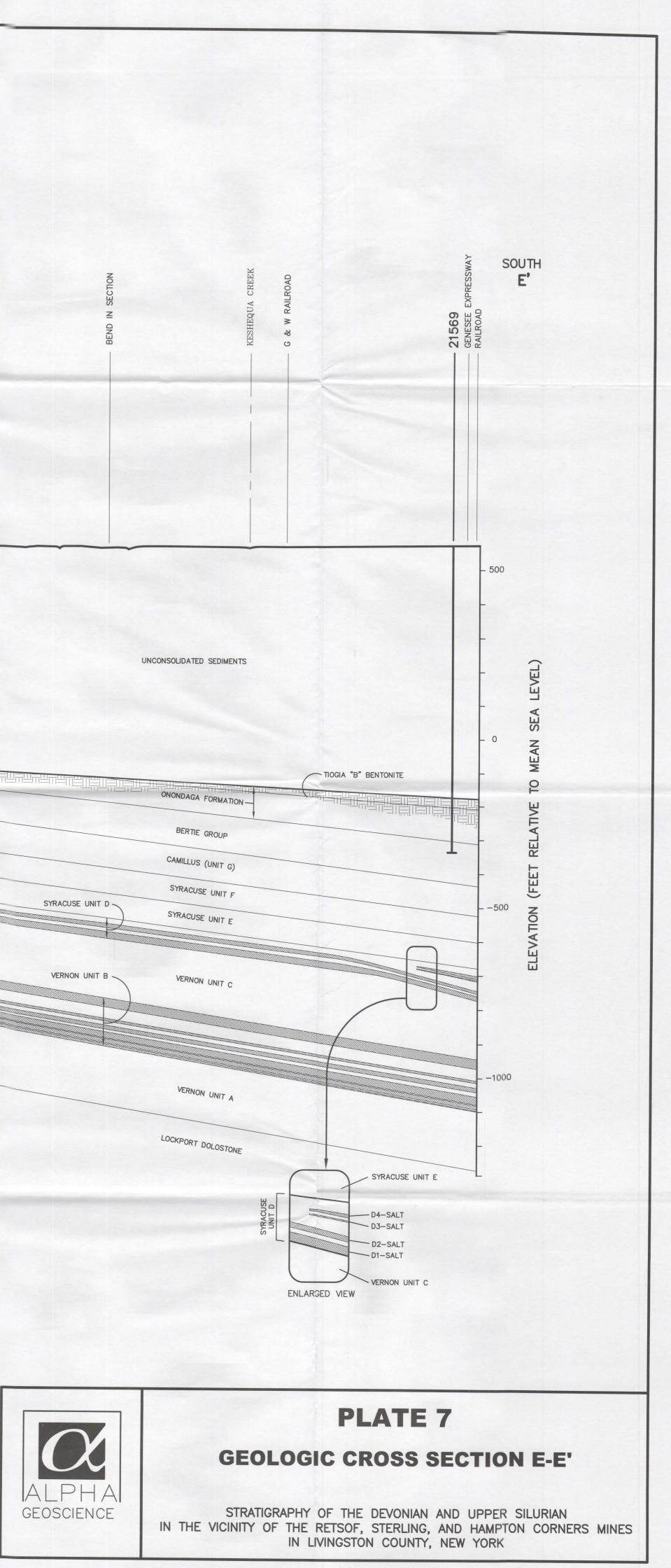
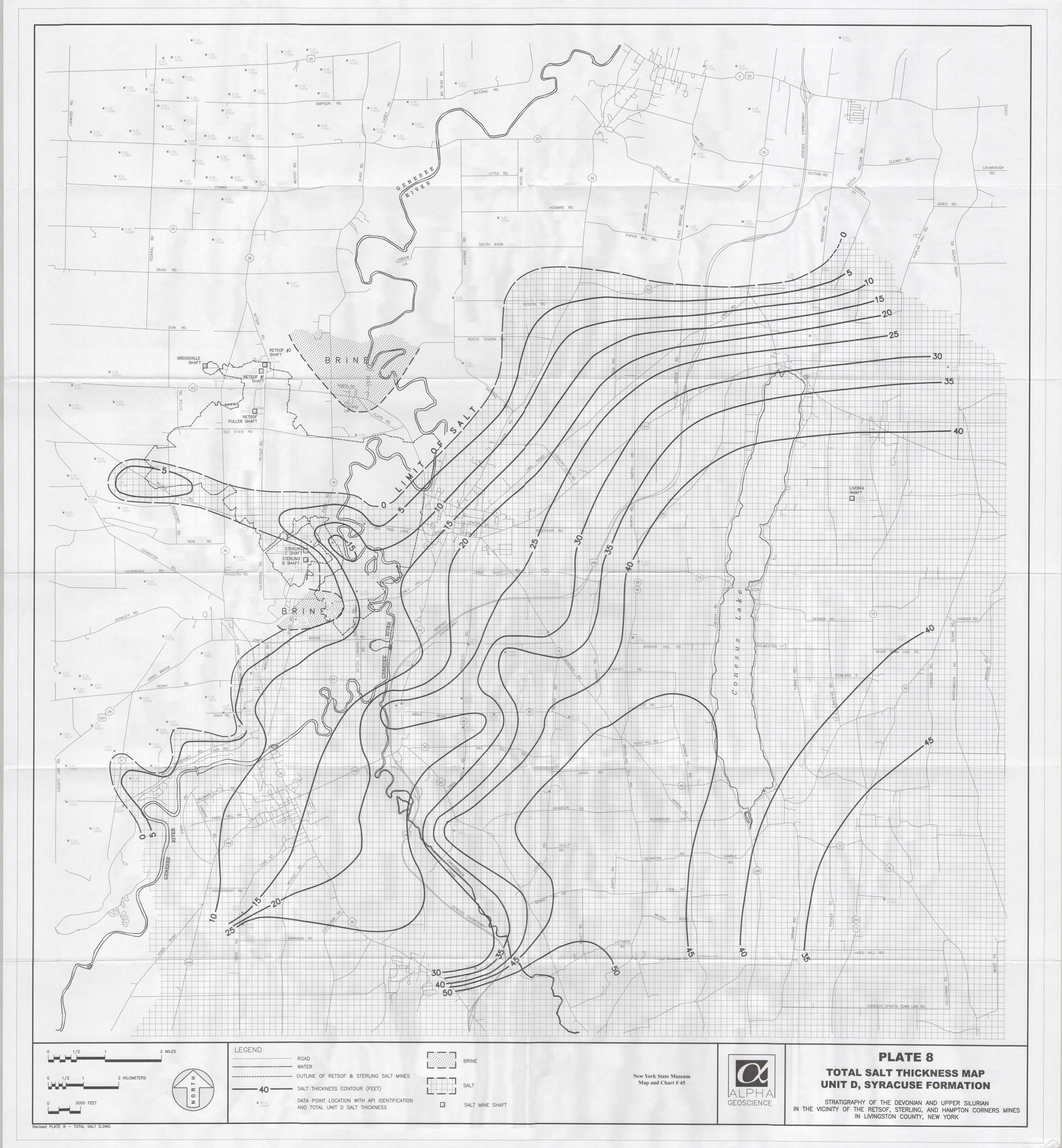
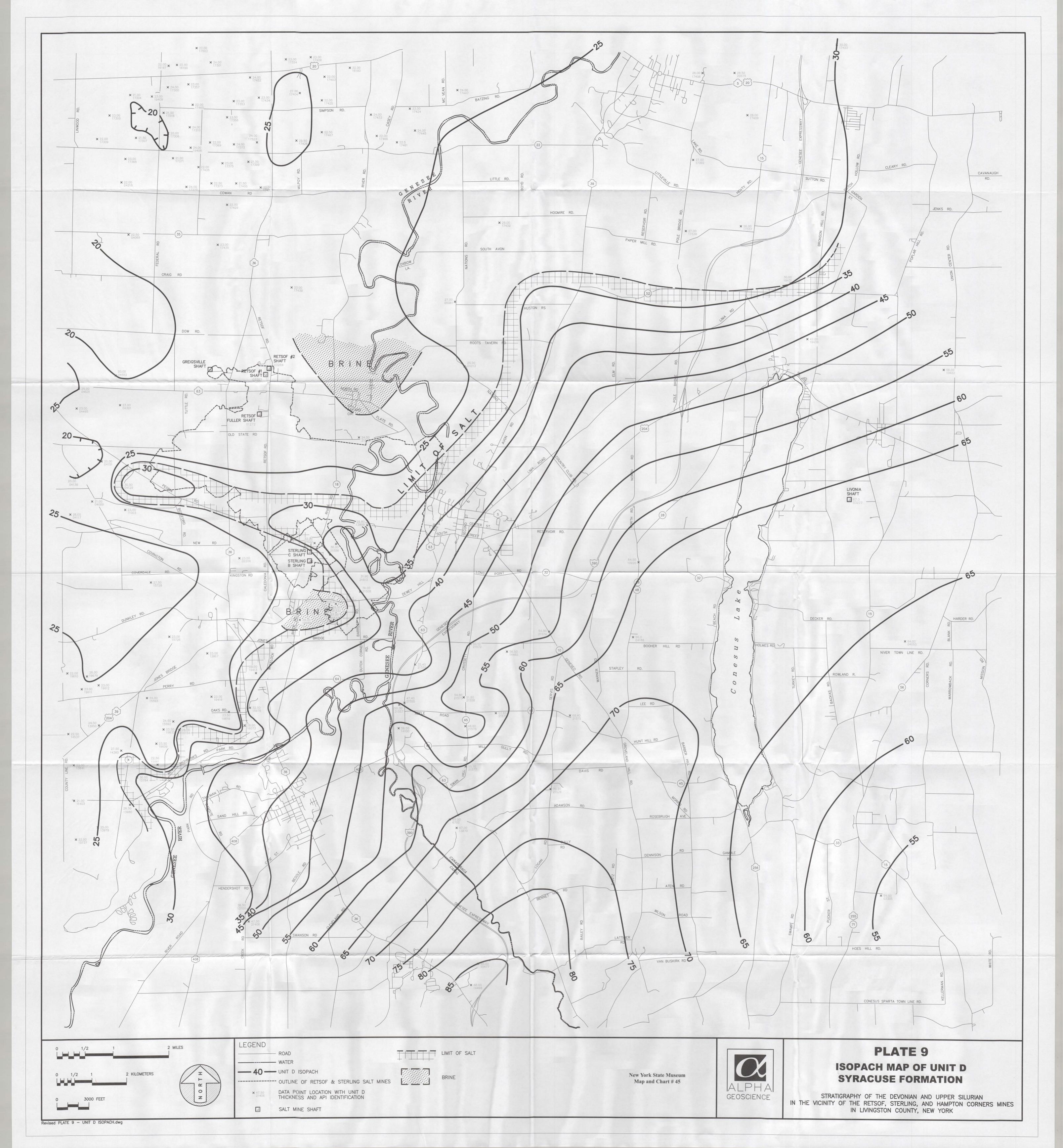
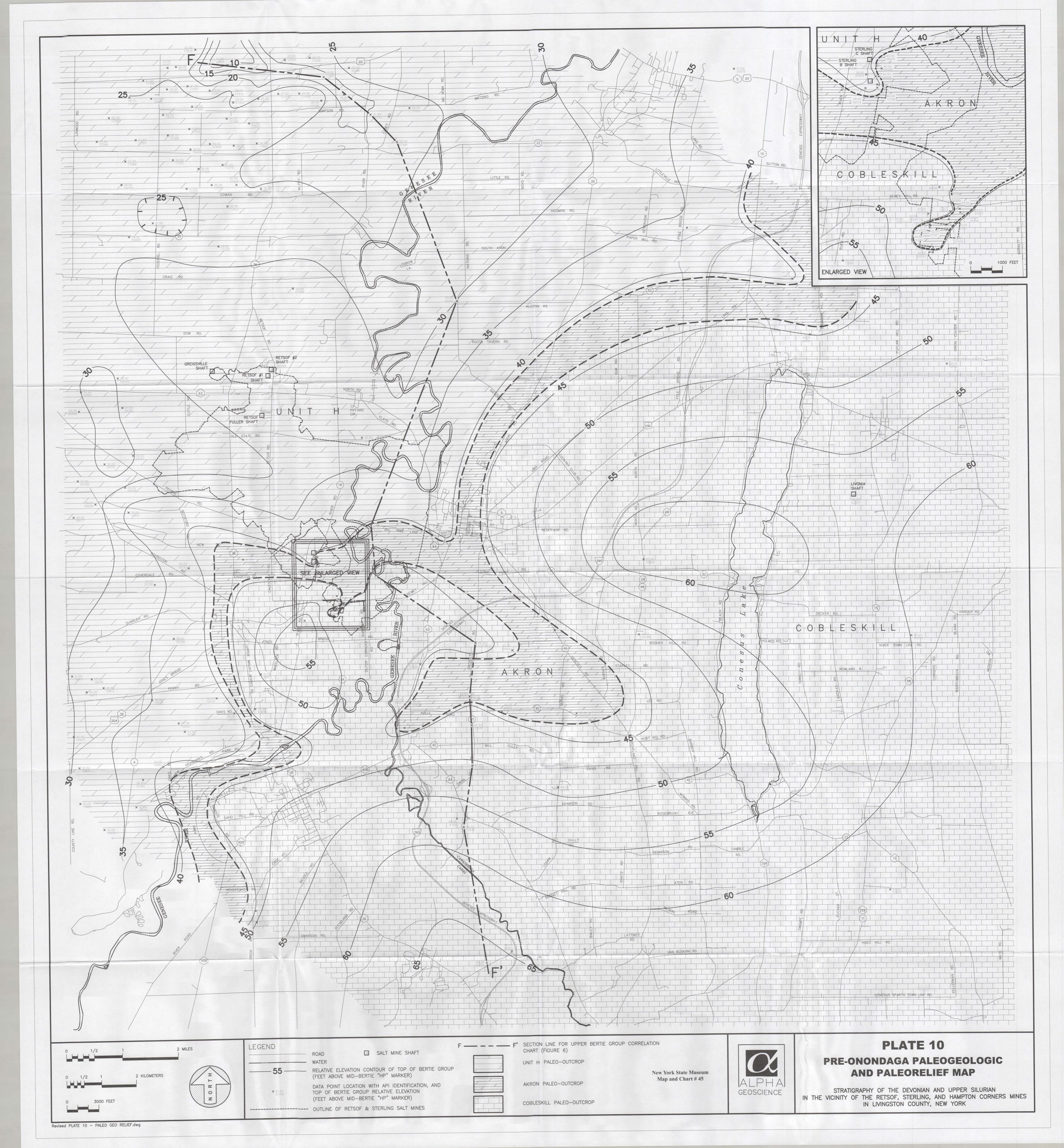

- SERIES	GROUP	FORMATION	MEMBER OR INFORMAL ROCK UNIT	DESCRIPTION	LITHOLOGIC SYMBOL	NATURAL GAMMA LOG DEPTH (FEET) 0.0 GR(GAPI) 200.00 0 0
CENE WISCON- SONIAN			GLACIAL OVERBURDEN	PREDOMINANTLY GLACIAL TILL OR GLACIOLACUSTRINE CLAYS AND SILTS		
	. FALLS		HATCH SHALE	SHALE; INTERLAYERED GRAY AND BROWNISH BLACK; NON-CALCAREOUS TO CARBONACEOUS; WITH OCCASIONAL ARGILLACEOUS LIMESTONE BANDS AND CONCRETIONARY LAYERS; RARE FOSSILS; MILD PETROLIFEROUS ODO	R; FISSILE	- 50 - 100
	WEST		RHINESTREET SHALE	SHALE; INTERLAYED GRAY AND BROWNISH BLACK; PREDOMINANTLY BROWNISH BLACK AND HIGHLY FISSILE TOWARD BASE; NON-CALCAREOUS; CARBONACEOUS; VERY RARE FOSSILS; RARE PYRITE; RARE SEPTARIA; PETROLIFERO		
SENECAN	SONYEA		CASHAQUA SHALE	SHALE; OLIVE GRAY, DARK GRAY, AND BROWNISH BLACK; SLIGHTLY CALCAREOUS TO NON-CALCAREOUS; RARE TO OCCASIONAL FOSSILS INCLUDE STYLIOLINIDS, GONIATITE CEPHALOPODS, SMALL BRACHIOPODS AND PELECYPODS; RARE CARBONIZED PLANT DEBRIS AND PYRITIZED BURROW CASTS; HIGHLY FISSILE		- 200 - 250 - 300
			PULTENEY SHALE	SHALE; INTERBEDDED DARK GRAY AND BROWNISH BLACK, WITH BEDDING THICKNESS AVERAGING 0.5 FEET; NON-CALCAREOUS; BROWNISH BLACK BEDS ARE CARBONACEOUS AND HAVE PETROLIFEROUS ODOR; VERY RARE FOSSILS SHALE; BROWNISH BLACK, RARELY DARK GRAY; CARBONACEOUS; OCCASIONAL PYRITE; ABUNDANT		
			MIDDLESEX SHALE WEST RIVER SHALE	STYLIOLINIDS AND CONODONTS; OCCASIONAL THIN LAYERS OF COALIFIED MATERIAL AND CARBONIZED PLANT FRAGMENTS; RARE CALCAREOUS CONCRETIONS SHALE; DARK GRAY, OCCASIONALLY INTERBEDDED WITH BROWNISH BLACK; DARK GRAY INTERVALS ARE CALCAREOUS, WITH OCCASIONAL STYLIOLINIDS, BRACHIOPODS AND PELECYPODS, AND FREQUENT PYRITE		
	NESEE		GENUNDEWA LST	BURROW CASTS; BROWNISH BLACK BEDS ARE CARBONACEOUS, NON-CALCAREOUS, WITH RARE PYRITE AND A PETROLIFEROUS ODOR; UNIT CONTAINS OCCASIONAL CALCAREOUS CONCRETIONS AND SEPTARIA LIMESTONE; DARK GRAY TO OLIVE BLACK; NODULAR; ABUNDANT STYLIOLINIDS AND RARE BRACHIOPODS; NODULES RARELY SEPTARIAN		
	GEI		PENN YAN SHALE	SHALE; INTERBEDDED DARK GRAY AND BROWNISH BLACK; CALCAREOUS TO SLIGHTLY CALCAREOUS; WITH FREQUENT, CALCAREOUS CONCRETIONS AND THIN, BIOTURBATED, ARGILLACEOUS LIMESTONE BANDS; FOSSILIFEROUS, WITH ABUNDANT STYLIOLINIDS, AND OCCASIONAL BRACHIOPODS AND PELECYPODS; MODERATELY PYRITIC		
~~~	w		GENESEO SHALE	SHALE; BLACK TO BROWNISH BLACK; CARBONACEOUS; SLIGHTLY CALCAREOUS TOWARD BASE OF UNIT; FREQUENT PYRITE AS LAMINAE AND NODULES; MIDDLE THIRD OF UNIT COMMONLY CHARACTERIZED BY FREQUENT FOSSIL HASH LAYERS OF STYLIOLINIDS AND BRACHIOPODS, AND BY THIN ARGILLACEOUS LIMESTONE BEDS; MILD PETROLIFEROUS ODOR THROUGHOUT UNIT; FISSILE; "LEICESTER PYRITE" LAG AT BASE OF UNIT SHALE; DARK GRAY; NON-CALCAREOUS TO SLIGHTLY CALCAREOUS; FREQUENT THIN FOSSIL HASH LAYERS CHARACTERIZED BY AMBOCOELLID BRACHIOPODS, RUGOSE CORALS, BRYOZOANS, CRINOIDS, AND TRILOBITES; PYRITE AS PURPOW CASTS AND FOSSIL DEPLACEMENT. DARE CONCEPTIONS: DASE OF UNIT AT		
		MOSCOW	WINDOM SHALE	PYRITE AS BURROW CASTS AND FOSSIL REPLACEMENT; RARE CALCAREOUS CONCRETIONS; BASE OF UNIT AT BOTTOM OF 0.2 FOOT INTERVAL CONTAINING GRAYISH BLACK, SUBANGULAR PHOSPHATE PEBBLES ("LITTLE BEARDS CREEK PHOSPHALE BED") SHALE; DARK GRAY; NON-CALCAREOUS TO CALCAREOUS; SCATTERED AND OCCASIONAL FOSSILS INCLUDE		
			KASHONG SHALE	SHALE; DARK GRAY; NON-CALCAREOUS TO CALCAREOUS; SCATTERED AND OCCASIONAL FOSSILS INCLUDE CRINOIDS, BRYOZOANS, AND SPIRIFERID BRACHIOPODS, WITH A NOTICEABLE ABSENCE OF AMBOCOELLIDS; BIOTURBATED AND BURROWED; LOWER HALF OF UNIT COMMONLY CONTAINS FREQUENT FOSSIL HASH BEDS; PYRITE AS BURROW CASTS AND FOSSIL REPLACEMENT; VERY FOSSILIFEROUS IN LOWER 5 FEET		
		LUDLOWVILLE	TICHENOR LST JAYCOX SHALE WANAKAH SHALE	LIMESTONE; DARK GRAY; NODULAR TO MASSIVE; VERY FOSSILIFEROUS, WITH CRINOIDS, TABULATE AND RUGOSE CORALS, BRACHIOPODS AND BRYOZOANS; INTENSELY CHURNED BY BURROWING SHALE; DARK GRAY; SLIGHTLY CALCAREOUS TO CALCAREOUS; ABUNDANTLY FOSSILIFEROUS; WITH PYRITE ABUNDANT IN UPPER 1 FOOT SHALE; DARK GRAY; SLIGHTLY TO NON-CALCAREOUS; WITH OCCASIONAL THIN, BIOTURBATED, ARGILLACEOUS LIMESTONES; FOSSILIFEROUS, WITH ABUNDANT AMBOCOELLID BRACHIOPODS, BRYOZOANS, CRINOIDS, TRILOBITES, STYLIOLINIDS, AND RARE RUGOSE CORAL TOWARD BASE; MODERATELY PYRITIC; MILD PETROLIFEROUS ODOR		
	-		LEDYARD SHALE	SHALE; DARK GRAY TO OLIVE BLACK; SLIGHTLY CALCAREOUS; FOSSILIFEROUS, WITH ABUNDANT STYLIOLINIDS; OTHER SCATTERED AND OCCASIONAL FOSSILS INCLUDE AMBOCOELLID BRACHIOPODS, BRYOZOANS, TRILOBITES, CRINOIDS, AND NAUTILOIDS; RARE CARBONIZED PLANT MATERIAL; MODERATELY PYRITIC; MILD PETROLIFEROUS ODOR		-800
ERIAN	HAMILTON		CENTERFIELD LST	LIMESTONE; GRAY; NODULAR TO MASSIVE; FINE TO MEDIUM CRYSTALLINE; FOSSILIFEROUS; GRADES UPWARD AND DOWNWARD TO LESS FOSSILIFEROUS CALCAREOUS SHALE; ABUNDANT FOSSILS INCLUDE RUGOSE AND TABULATE CORALS, BRACHIOPODS, CRINOIDS, BRYOZOANS AND TRILOBITES; BIOTURBATED AND BURROWED; RARE PYRITE		- 850
		SKANEATELES	LEVANNA	SHALE; DARK GRAY, BROWNISH BLACK, AND OLIVE BLACK; CALCAREOUS; RARE FOSSILS, EXCEPT FOR STYLIOLINIDS, AND SMALL BRACHIOPODS AND PELECYPODS; MIDDLE THIRD OF UNIT CHARACTERIZED BY ARGILLACEOUS LIMESTONE INTERVALS UP TO 5 FEET THICK; MODERATE PETROLIFEROUS ODOR, BECOMING STRONGER TOWARD BASE OF UNIT WITH A CONCOMITANT INCREASE IN BROWNISH BLACK SHALE INTERVALS		
		ONONDAGA	STAFFORD LST BAKOVEN SENECA TIOGA B. MOOREHOUSE	LIMESTONE; DARK GRAY TO BROWNISH BLACK; MASSIVE; FOSSILIFEROUS, COMMONLY WITH BRACHIOPODS, TRILOBITES, CEPHALOPODS, STYLIOLINIDS AND RARE CORAL; STYLOLITIC; PETROLIFEROUS ODOR; UNIT ABSENT IN HOLES #9443 AND SHALE; BLACK; CARBONACEOUS; NON-CALCAREOUS, SLIGHTLY CALCAREOUS IN LOWER PART OF UNIT; HIGHLY PYRITIC; SPARSELY FOSSILIFEROUS, WITH STYLIOLINIDS, AND RARE BRACHIOPODS AND PELECYPODS; OCCASIONAL SEPTARIAN NODULES AND CARBONATE CONCRETIONS; BASE OF UNIT IS BENEATH BROWNISH BLACK STYLIOLINID GRAINSTONE (CHERRY VALLEY LIMESTONE) WHICH RARELY CONTAINS BRACHIOPODS AND PELECYPODS, AND OCCASIONALLY DISPLAYS CONVOLUTE LAMINATIONS; HIGHLY FRACTURED; STRONG PETROLIFEROUS ODC SHALE; BROWNISH BLACK TO DARK GRAY; CARBONACEOUS; SLIGHTLY CALCAREOUS; EXTREMELY ABUNDANT STYLIOLINIDS; OCCASIONAL STYLIOLINID GRAINSTONES; PETROLIFEROUS ODOR GENERAL DESCRIPTION: LIMESTONE; OLIVE GRAY, BROWNISH GRAY, DARK GRAY, AND BROWNISH BLACK; MASSIVE; FINE TO MEDIUM CRYSTALLINE; ABUNDANT CHERT; VERY FOSSILIFEROUS; WITH BRACHIOPODS, CRINOIDS, BRYOZOANS, RUGOSE AND TABULATE CORALS; STYLOLITIC; RARE PYRITE; PETROLIFEROUS ODOR. ONONDAGA MEMBER DIFFERENTIATION BASED UPON THE FOLLOWING CHARACTERISTICS: SENECA : LIES ABOVE (AND INCLUDES) THE TOGA B BENTONITE IN ALL CORES; UPPER FOUR FEET OF THE SENECA OFTEN CONTAINS A 1 TO 2 FOOT THICK BLACK SHALE INTERVAL; CHERTY (~15%)		-1000 -1050 -1050 -1000 -1050 -1100 -1100 -1150
			NEDROW	MOOREHOUSE : SIMILAR TO SENECA, BUT MORE CHERTY (~25%); CHERT NODULES OCCASIONALLY PALE BROWN NEDROW : DARKER (BROWNISH BLACK), MORE ARGILLACEOUS AND LESS CHERTY (~5%) THAN OTHER MEMBERS; FOSSILS ARE VERY RARE; SHARP AND IRREGULAR BASE BENEATH DISTINCTIVE, BURROWED, OLIVE GREEN MUDSTONE HORIZON MARKED BY ABUNDANT SMALL, BLUE GREEN FLECK EDGECLIFF : EXTREMELY CHERTY (25–75%); CHERT NODULES CHARACTERIZED BY INTERNAL, WHITE CALCITE VEINLETS		-1200
~~~~	BERTIE	AKRON	UNIT H	DOLOMITE; YELLOWISH BROWN TO BROWNISH GRAY; FINE CRYSTALLINE; LAMINATED; VERY STRONG PETROLIFEROUS ODOR. NOTE – COBLESKILL LIMESTONE IS PRESENT ABOVE THE AKRON DOLOMITE AT SOME CORE LOCATIONS. THE COBLESKILL IS DESCRIBED AS FOLLOWS: GRAY AND BROWNISH GRAY; INTERLAMINATED; FINE CRYSTALLINE; RARE BRACHIOPODS; NO PETROLIFEROUS ODOR DOLOMITE; GRAY TO OLIVE GRAY; SILTSTONE; MASSIVE TO LAMINATED; TYPICALLY WITH BLACK, BIOTURBATION MOTTLING; OCCASIONAL SANDY LENSES, RIP-UP CLASTS AND INTRACLASTS; NO PETROLIFEROUS ODOR DOLOMITE AND DOLOMITIC SHALE; BROWNISH GRAY, GRAY AND DUSKY YELLOWISH BROWN; FINE CRYSTALLINE; MASSIVE TO LAMINATED; VUGGY; OCCASIONAL HORIZONS OF RIP-UP CLASTS AND INTRACLASTS; SUITELINE; AND MASSES OF GYPSUM, SPHALERITE, CHERT, ANNYDRITE, AND ELEMENTAL		- 1250 - 1250 - MID-BERTIE MARKER, OR "HP" MARKER, OF RICKARD (1969) - 1300
		CAMILLUS	UNIT G	SULFUR; ANHYDRITE RARELY BEDDED; COMMONLY HAS VERY STRONG PETROLIFEROUS ODOR AND OIL SHOWS SHALE; OLIVE GRAY, OLIVE BLACK, AND GRAY; TYPICALLY MASSIVE DUE TO EXTENSIVE FLUID MIGRATION AND ANHYDRITE FORMATION; ANHYDRITE COMMON AS STRINGERS AND NODULES; OCCASIONALLY CONTAINS BROWNISH GRAY DOLOMITE BEDS WITH GYPSUM-HEALED FRACTURES		
			UNIT F	DOLOMITE; BROWNISH GRAY AND DUSKY YELLOWISH BROWN; INTERLAYERED WITH THINNER, GRAY SHALES; FINE CRYSTALLINE; MASSIVE TO THIN BEDDED; CONTAINS STROMATOLITES; DESSICATION FEATURES, GYPSUM BLEBS, AND ANHYDRITE NODULES AND STRINGERS ARE COMMON; PETROLIFEROUS ODOR; SHALE INTERVALS ARE MASSIVE DUE TO EXTENSIVE FLUID MIGRATION AND ANHYDRITE FORMATION		
		SYRACUSE	UNIT E	DOLOMITE; BROWNISH GRAY AND DUSKY YELLOWISH BROWN; INTERBEDDED WITH THIN GREENISH GRAY SHALES; FINE CRYSTALLINE; MASSIVE TO THIN BEDDED; CONTAINS STROMATOLITES, DESSICATION FEATURES, AND GYPSUM BLEBS; LOWER FIFTH OF UNIT OCCASIONALLY CONTAINS HALITE STREAKS AND INCLUSIONS; DOLOMITE BEDS FREQUENTLY HAVE A PETROLIFEROUS ODOR; SHALE BANDS TYPICALLY CONTAIN ANHYDRITE NODULES AND STRINGERS, AND ARE MASSIVE DUE TO EXTENSIVE FLUID MIGRATION AND ANHYDRITE FORMATION; UPPER FIFTH OF UNIT IS TYPICALLY SHALE		-1500
CAYUGAN	SALINA		UNIT D	INTERBEDDED DOLOMITE, SHALE AND HALITE; DOLOMITE IS DARK YELLOWISH BROWN, GYPSIFEROUS, AND OCCASIONALLY CROSS-BEDDED; SHALE IS GREENISH GRAY, OCCASIONALLY DOLOMITIC, WITH FREQUENT FLUID ESCAPE STRUCTURES; BOTH DOLOMITE AND SHALE CONTAIN BLEBS, BANDS AND INCLUSIONS OF HALITE AND ANHYDRITE; HALITE BEDS ARE WHITE TO GRAY, CLEAR, VERY COARSELY CRYSTALLINE, AND PRIMARILY DIVIDED INTO 2 PROMINENT HORIZONS, D-1 AND D-2.		
	1		UNIT C	SHALE; GREENISH GRAY WITH OCCASIONAL DARK RED MOTTLING; TYPICALLY MASSIVE AND STRUCTURELESS; WITH ABUNDANT STREAKS, STRINGERS, AND VEINS OF REDDISH ORANGE HALITE; OCCASIONALLY CONGLOMERATIC, WITH ANHYDRITE PEBBLES AND CLAYSTONE CLASTS AND RIP-UPS; RARE SANDSTONE BEDS AVERAGING 0.5 FEET IN THICKNESS; SMALL, MICACEOUS HEMATITE CRYSTALS COMMONLY ASSOCIATED WITH HALITE; CONTAINS RARE INTERVALS OF BROWN, GYPSIFEROUS DOLOMITE WITH ANHYDRITE NODULES AND HALITE INCLUSIONS		-1700



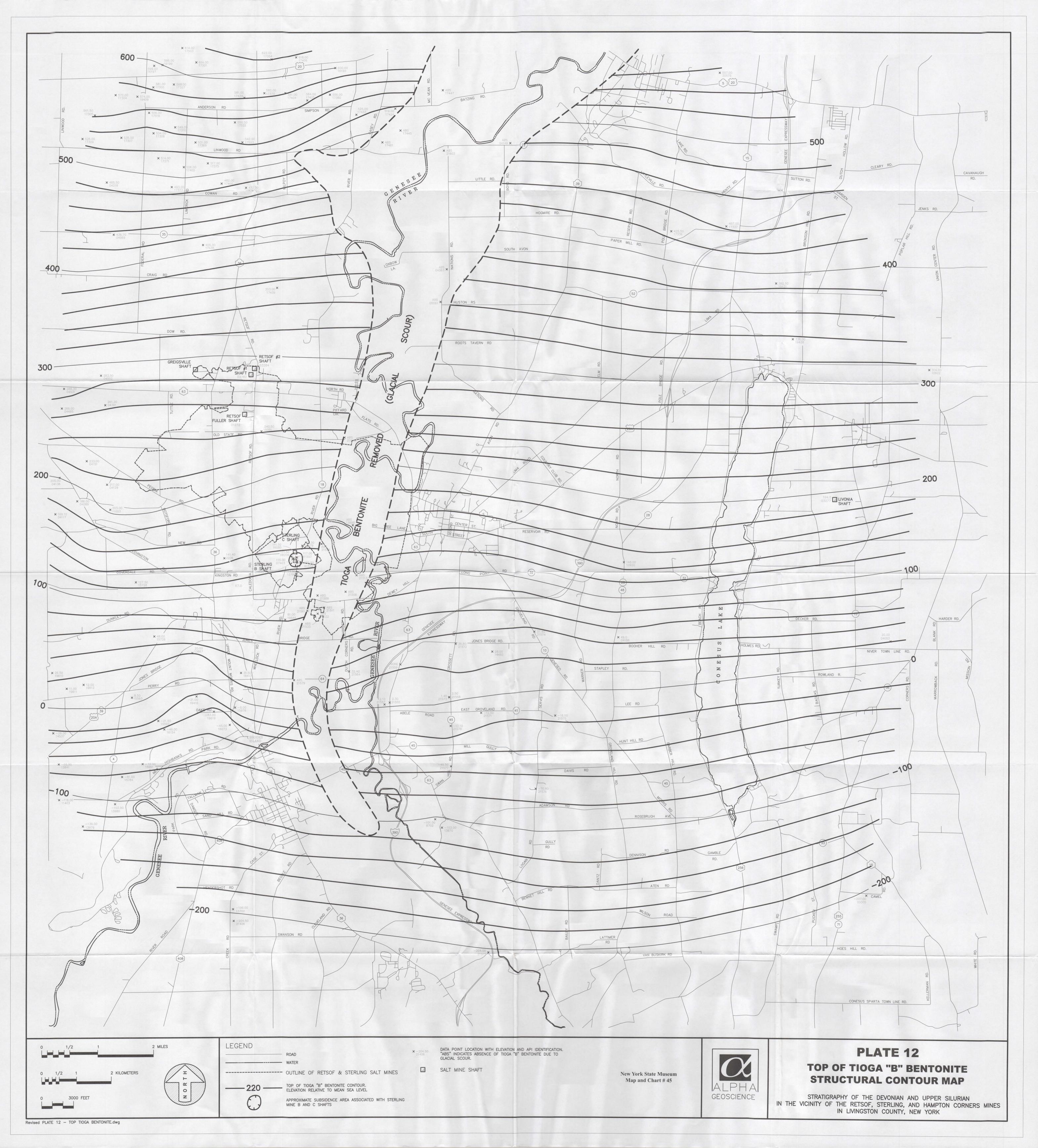







CENTERE DIVED	13898 GENESEE RIVER	DEWEY HILL RD	CROSS SECTION A-A' JONES BRIDGE ROAD	CROSS SECTION D-D'	PERRY RD. (BEND IN SECTION)			STATE ROUTE 408
					OXBOW	MEANDER		
VERNON UNIT C B6-SALT B5-SALT B4-SALT B3-SALT B2-SALT B1-SALT VERNON UNIT A VIEW								
			NOT FOR (I.E. SHA PLA OF	RMATIONAL .; CORE H AFTS) FOL ATE 12, ST THE TIOG	CONTACTS B HOLES, OIL AND LOW THE STRU TRUCTURAL CO A "B" BENTON New York Sta Map and C	D GAS WELL ICTURE DEP NTOUR MAF TE. te Museum	S, AND MINE ICTED IN OF THE TOP	

.



SHEQUA CREEK		HC9-BH B95.73 HC9-BR B30.57
ENLARGED VIEW SCALE: 1" = 500'	ARRESSINAL WE	Linker Hill ROAD ON INDO ON ON
HC1-BW 581.38 FALL FALL BROOK FALLS TO9.13	LEGEND PROJECTED OUTCROP, NOT ADJUSTED FOR OVERBURDEN / SUBCROP. 21577 HAMPTON CORNERS CORE HOLES (1994–1995 SERIES)	New York State Museum Map and Chart # 45
0 1/2 1 MILE 0 1/2 1 KILOMETER	x 13870 OIL AND GAS WELL, OR OTHER EXPLORATORY BORING WITH API IDENTIFICATION (ISCO BORING HAS NO API ID.) A HC10-BLP 680.25 SURVEYED LITHOLOGIC CONTACT AT BEDROCK OUTCROP HAMPTON CORNERS MAP AREA 10-BASE OF LEICESTER PYRITE, SUBSCRIPT = ELEVATION IN FEET ABOVE MEAN SEA LEVEL. -BMSD -BW BASE OF MIDDLESEX RELATIVE TO LOCAL DATUM BASE OF WINDOM	PLATE 11 BEDROCK GEOLOGIC MAP
	-BG BASE OF GENUNDEWA LIMESTONE -BPY BASE OF PENN YAN -BMS BASE OF MIDDLESEX -BR BASE OF RHINESTREET -BH BASE OF HATCH	GEOSCIENCE IN THE VICINITY OF THE RETSOF, STERLING, AND HAMPTON CORNERS MINES IN LIVINGSTON COUNTY, NEW YORK

PLATE 11 - BEDROCK GEOLOGY

STRATIGRAPHY OF THE DEVONIAN AND UPPER SILURIAN IN THE VICINITY OF THE RETSOF, STERLING AND HAMPTON CORNERS MINES IN LIVINGSTON COUNTY, NEW YORK

BY SAMUEL W. GOWAN STEVEN M. TRADER MAUREEN E. PIEL LAWRENCE D. MILLIKEN

NEW YORK STATE MUSEUM

Map and Chart Series No. 45 2006

THE UNIVERSITY OF THE STATE OF NEW YORK

Regents of The University

ROBERT M. BENNETT, Chancellor, B.A., M.S.	Tonawanda
ADELAIDE L. SANFORD, Vice Chancellor, B.A., M.A., P.D.	Hollis
SAUL B. COHEN, B.A., M.A., Ph.D.	
JAMES C. DAWSON, A.A., B.A., M.S., Ph.D.	Peru
ANTHONY S. BOTTAR, B.A., J.D.	North Syracuse
Merryl H. Tisch, B.A., M.A.	
GERALDINE D. CHAPEY, B.A., M.A., Ed.D.	Belle Harbor
Arnold B. Gardner, B.A., LL.B.	Buffalo
HARRY PHILLIPS, 3rd, B.A., M.S.F.S.	Hartsdale
JOSEPH E. BOWMAN, JR., B.A., M.L.S., M.A., M.Ed., Ed.D.	Albany
Lorraine A. Cortés-Vázquez, B.A., M.P.A.	Bronx
James R. Tallon, Jr., B.A., M.A.	Binghamton
MILTON L. COFIELD, B.S., M.B.A., Ph.D.	Rochester
John Brademas, B.A., Ph.D.	New York
Roger B. Tilles, B.A., J.D.	Great Neck
KAREN BROOKS HOPKINS, B.A., M.F.A.	Brooklyn

President of The University and Commissioner of Education

RICHARD P. MILLS

Chief of Staff

Counsel and Deputy Commissioner for Legal Affairs KATHY A. AHEARN

Deputy Commissioner for Cultural Education CAROLE F. HUXLEY

Director of the New York State Museum

CLIFFORD A. SIEGFRIED

Director, Research and Collections Division JOHN P. HART

The State Education Department does not discriminate on the basis of age, color, religion, creed, disability, marital status, veteran status, national origin, race, gender, genetic predisposition or carrier status, or sexual orientation in its educational programs, services and activities. Portions of this publication can be made available in a variety of formats, including braille, large print or audio tape, upon request. Inquiries concerning this policy of nondiscrimination should be directed to the Department's Office for Diversity, Ethics, and Access, Room 530, Education Building, Albany, NY 12234. Requests for additional copies of this publication may be made by contacting Publication Sales, Room 3140, Cultural Education Center, New York State Museum, Albany, NY 12230.

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

By

12

Samuel W. Gowan Steven M. Trader Maureen E. Piel Lawrence D. Milliken

New York State Museum Map and Chart Series No. 45 2006

The University of the State of New York The State Education Department Albany, New York 12230 © The New York State Education Department, Albany, New York 12230

Published 2006

Printed in the United States of America

Copies may be ordered from: Publication Sales 3140 CEC New York State Museum Albany, New York 12230 Phone: (518) 402-5344 FAX: (518) 474-2033 Web address: http://www.nysm.nysed.gov/publications/index.html

Library of Congress Catalog Card Number: 2005933119

ISBN: 1-55557-231-6 ISSN: 0097-3793

TABLE OF CONTENTS

List of Figures vi
List of Photographs vi
List of Plates vii
INTRODUCTION
STRATIGRAPHY 3
Salina Group 3
Vernon Formation
Syracuse Formation
Camillus Formation
Bertie Group
Onondaga Formation
Marcellus Subgroup
Hamilton Group 16
Skaneateles Formation 16
Ludlowville Formation
Moscow Formation
Genesee Group
Sonyea Group
West Falls Group 18
STRUCTURE 19
ACKNOWLEDGEMENTS
LITERATURE CITED
APPENDIX A Core Log of Akzo Core Hole 9455 (API #21575)
APPENDIX B Well Identification and Subsurface Data
APPENDIX C Salt Thickness Data from the Vernon Formation (Unit B)65
APPENDIX D Salt Thickness Data from Syracuse Formation (Unit D)69

LIST OF FIGURES

Figure 1:	Area of Study	1
Figure 2:	Stratigraphic Column	4
Figure 3:	Comparison of Gamma Ray Signatures for Holes 19685 and 21557.	8
Figure 4:	Regional Distribution and Gamma Signatures for the Drill Hole Data Presented on Figure 5	9
Figure 5:	Comparison of Gamma Ray Signatures and Unit D Thickness for Holes in the vicinity of the Retsof Mine.	10
Figure 6:	Gamma Ray correlation chart for the Bertie Group in Livingston County. C = Cobleskill Limestone; A = Akron Dolostone; H = Unit H.	14

LIST OF PHOTOGRAPHS

Photograph 1:	Rotated blocks of dolostone and shale at top of B2 salt bed in core from Hampton Corners hole 9456 (API #21576). Note near-vertical laminae within dolostone interval below 1,806.6 feet.	5
Photograph 2:	Retsof Mine wall in exploratory decline (ramp) to the lower salt beds (B-5 down through B-1) near the Fuller Shaft. Note breakage and rotation of shale and dolostone blocks, and apparent flowage of salt.	5
Photograph 3:	Red and green shale of the Vernon Unit C formation in core from Hampton Corners hole 9456 (API #21576). Note reddish-orange halite lenses, streaks, and fracture-fill.	6
Photograph 4:	Roof of Retsof Mine where the B-6 salt had fallen away, revealing a polygonal network of reddish-orange salt-filled fractures.	6
Photograph 5:	Pitted dolostone at top of Unit D, and basal anhydrite (an) of Unit E in core from Hampton Corners hole 9456 (API #21576).	7
Photograph 6a:	Rip-up clast breccia (br) in core of upper Unit H of the Bertie Group from Hampton Corners hole 9453 (API #21572).	12
Photograph 6b:	Laminae offset (off.) and dark, carbonaceous partings within dolostones of the upper Unit H of the Bertie Group. Note unconformity (unc.) at the base of the olive grey siltstone with wispy, black mottling. Core is from Hampton Corners hole 9441 (API #21559)	12
Photograph 7:	Bertie Group transition from the wispy-mottled top of Unit H (H), through Akron (A) and Cobleskill (C) Formations, and into the cherty Edgecliff Member of the Onondaga Formation (O), above the Wallbridge Unconformity (Wall.). Core is from Hampton Corners hole 9443 (API #21557).	12
Photograph 8:	Transition from Seneca Limestone Member of the Onondaga Formation (O) to the black shales of the Marcellus Subgroup (M). Note thin pyrite lag (py) at the unconformity between the two rock units. Core is from Hampton Corners hole 9444 (API #21555).	15

LIST OF PLATES

- Plate 1 Data Location Map
- Plate 2 Representative Geologic Column and Associated Natural Gamma Log API Well #21575 (Akzo Core Hole #9455) logged February 1995
- Plate 3 Geologic Cross Section A-A'
- Plate 4 Geologic Cross Section B-B'
- Plate 5 Geologic Cross Section C-C'
- Plate 6 Geologic Cross Section D-D'
- Plate 7 Geologic Cross Section E-E'
- Plate 8 Total Salt Thickness Map, Unit D, Syracuse Formation
- Plate 9 Isopach Map of Unit D, Syracuse Formation
- Plate 10 Pre-Onondaga Paleogeologic and Paleorelief Map
- Plate 11 Bedrock Geologic Map
- Plate 12 Top of Tioga "B" Bentonite Structural Contour Map

INTRODUCTION

A substantial quantity of geologic data was generated in the salt mining district in Livingston County, New York, following the collapse and subsequent flooding of the Retsof and Sterling salt mines in 1994. Most of the data were collected while investigating conditions in the area of the collapse and later while developing a new mine, which is currently being operated by American Rock Salt Company in the area southeast of the flooded Retsof Mine. This publication presents the bedrock stratigraphy and structural conditions derived from the assimilation of those recent data into a preexisting database for a 277-square-mile area of Livingston County that extends from the Wyoming County line on the west to Livonia on the east, and generally lies between Avon and Sonyea on the north and south, respectively (Figure 1). The stratigraphic analysis was focused specifically on the formations extending from the basal unit of the Upper Silurian Vernon Formation up to the base of the West Falls Group of the Upper Devonian.

The targeted geologic interval within the area has been of interest since the late nineteenth century when salt mining was initiated in the Genesee Valley. The stratigraphy associated with several mine shafts and brine wells, which were installed in the Genesee Valley salt mining district starting in 1885 and ending in the early twentieth century, was described by several individuals who were commissioned to assess the salt mining industry in New York State (Bishop, 1886; Luther, 1898; New

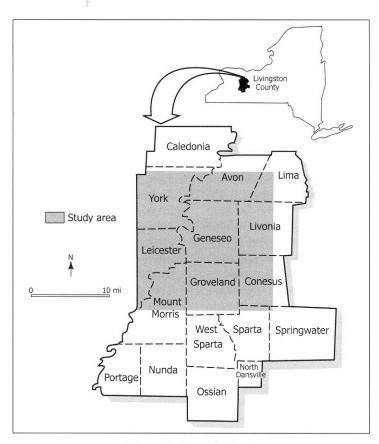


Figure 1: Area of Study

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

York State Geological Survey, 1938; Werner, 1917). Subsequent publications from the latter half of the twentieth century were focused on correlating the relationship of the units in the Genesee Valley with a much broader area. Rickard (1969, 1989) correlated the Upper Silurian and Lower through Middle Devonian for a broad region that included southern New York, northern Pennsylvania, and eastern Ohio. Rickard's correlation was accomplished from geophysical logs and lithologic data from widely spaced oil and gas wells along with a few scattered mine shafts. Kirchgasser et al. (1994) subsequently described the stratigraphic relationships of the Upper Devonian in the Genesee Valley area with the corresponding strata throughout central and western New York. The stratigraphy by Kirchgasser et al. (1994) was based on a synthesis of several published investigations that had relied principally on rock exposures and scattered borehole data.

Numerous investigations were being conducted for the Retsof, Sterling, and American Rock Salt Company mines during the latter half of the twentieth century. These unpublished reports provide an extensive database of detailed stratigraphic information for the area immediately around the mines. Several of these reports, such as those by Langill and Associates (1981, 1986A, 1990), addressed groundwater inflow to the Barbara ("B") Shaft in the Sterling Mine. The groundwater inflow to the "B" Shaft was of great concern to Akzo Nobel Salt Inc. (owner of the Retsof and Sterling mines), and its predecessor, International Salt Company (ISCO), due to the destabilizing effects that the inflow-related salt dissolution was having on the "B" Shaft and adjacent "C" Shaft in the Sterling Mine. The "C" Shaft was an integral part of the ventilation and escape route for the operating Retsof Mine. Additional subsurface geologic data were generated by International Salt Company while installing power to remote sections of the mine (Evermann, 1979), investigating resources for mine expansion (Szyprowski, 1967), and attempting to locate an alleged abandoned "A" Shaft (Langill and Associates 1986B). The stratigraphy and drill hole locations for much of this mine-related work were summarized in a report addressing the proposed use of the Retsof and Sterling mines as an incinerator ash storage facility (Dunn, 1992).

The present study builds on the previous work by incorporating detailed, recently acquired, subsurface information from the salt mining district of Livingston County, into the existing stratigraphic models. The new information includes continuous bedrock core data collected for the interval from the top of Unit A of the Vernon Formation up through the near-surface Upper Devonian shale formation from 12 holes in the area between Conesus Lake and the Genesee River. These core holes were logged with a suite of geophysical tools that included natural gamma-ray. These core and geophysical log data are available in Open File Report No. 6X782. The gamma-ray logs provided a mechanism for correlating the new data with geophysical logs and lithologic descriptions from oil and gas wells and the numerous investigations conducted around the Retsof Mine. These investigations had been performed to address operational issues during the life of the mine and to evaluate conditions related to the collapse and flooding of the mine in 1994. The locations for all of the 184 wells, borings, core holes, and shafts are shown on Plate 1. Many of these data points were drilled subsequent to the work by Rickard.

The continuous core data were the key elements in the present study. The cores with the natural gamma-ray logs provide a better understanding of the lithologic character, at least within the study area, for the units correlated across the region by Rickard. The higher spatial density of core hole locations and associated drill cuttings, geophysical logs, and surface outcrop data also provide greater local insight into the character of some interesting geologic features such as the contact between the Onondaga Formation and Bertie Group, the nature of the lateral limits of salt in Unit D of the Syracuse Formation, the lithologic character of Unit C of the Vernon Formation, and the physical appearance of an apparent décollement within Unit B of the Vernon.

STRATIGRAPHY

The geologic units encountered in the rock cores within the study area are represented on Figure 2. The most complete geologic section was encountered at core hole 9455 (API #21575), which was continuously cored starting at the top of rock within the middle of the Hatch Formation of the West Falls Group and extending for a total depth of 1,976.3 feet, where it finished 22.9 feet below the top of Unit A of the Vernon Formation. The natural gamma-ray log signature for core hole 9455 is displayed on Plate 2 along with a generalized geologic log description representing the lithologies derived from all of the core holes in the study area. A detailed log description from the actual core from hole 9455 is provided in Appendix A. The distribution of the geologic units was correlated throughout the region from natural gamma-ray logs, as illustrated on five cross sections (Plates 3-7).

SALINA GROUP

The lithologic units of the Vernon Formation of the Upper Silurian Salina Group represent the base of the section that was available for this investigation. The cores in the Hampton Corners area were cut into the top of Unit A of the Vernon Formation below the last salt of Unit B.

Vernon Formation

Rickard (1969) segregated the Vernon Formation into the members identified in ascending order (Figure 2 and Plate 2) as A, B, and C. The contact between Units A and B was designated by Rickard (1969) as the base of the B1 salt bed, the lowest salt bed in Unit B. Unit A ranges from approximately 162 feet thick in the northwest corner of the study area to 197 feet thick in the southeast corner, based on the gamma-ray logs within the study area and on Rickard (1969). Only the upper portion of Unit A was penetrated by the core holes in the Hampton Corners area. The lithologies encountered in the upper 22 feet of Unit A core consisted of gray to green, massive to laminated shale with occasional, contorted bedding or brecciated zones. Thin beds (less than two feet thick) of salt were present at some locations, and streaks of salt and zones of anhydrite nodules were encountered in most of the cores.

Unit B

Unit B, as defined by Rickard (1969), is the main salt-bearing zone of the Vernon Formation and is comprised of six major salt beds, numbered B-1 through B-6 in ascending order (Plate 2). The top of Unit B was defined in western New York as being the top of the B-6 salt, which is known locally as the Retsof Salt Bed (Rickard, 1969) since it was the principal layer being mined at the Retsof and Sterling mines. The selection of the B-6 salt as the top of Unit B is different from the "cb" marker, which is an evaporite/dolostone bed farther up in the section that is relied upon in Ohio as the upper contact (Rickard, 1969). The B-6 contact is apparently more consistent with historical correlation completed in neighboring Pennsylvania and Ontario.

The salt in layers B-1 through B-6 is generally dark gray to white and translucent with shale blebs and shale fragments commonly embedded in the salt. The salt is coarse to very coarse crystalline, and the beds are highly variable in thickness with salt bed B-6 tending to be the thickest, though B-2, B-3, and B-4 were often as thick.

The lower salt beds (B-1 through B-5) are separated by intervals of greenish-gray to olive-black shale that contain numerous fractures filled with reddish-brown halite. Anhydrite is also common. The shale interval thickness generally ranges between one and five feet with an average of approximately two feet in the cores. The shales are laminated, though laminae are often broken or disrupted by fluid-escape structures. The shale to salt contacts are sharp, but they are also often broken or brecciated. Angular fragments of the shale are occasionally visible within upper portions of the salt beds. A thin, unnamed salt bed was often encountered above B-4, and the shale layer overlying that unnamed salt varies between laminated, massive, and occasionally brecciated.

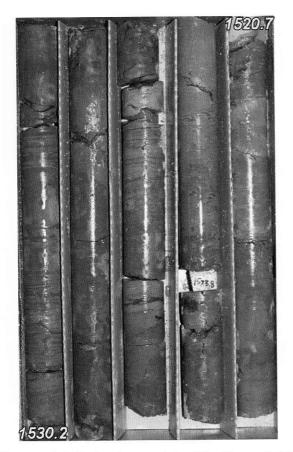
The interval between salt beds B-5 and B-6 is much thicker and has a more variable lithology

	West Falls Group			
UPPER DEVONIAN	H	Hatch Shale Rhinestreet Shale		
	P M	cashaqua Shale Pulteney Shale Iiddlesex Shale		
	G	Vest River Shale Genundewa Limestone Penn Yan Shale Geneseo Shale		
	Hamilton Group			
MIDDLE DEVONIAN	Moscow Forn W K T Ludlowville F J V L Skaneateles L Skaneateles L S Marcellus Su Onondaga F S M N C	Vindom Shale Gashong Shale Tichenor Limestone Formation aycox Shale Vanakah Shale Genterfield Limestone Formation Levanna Shale Stafford Limestone Jogroup Datka Creek Formation Jnion Springs Formation		
UPPER SILURIAN	Bertie Group A L Salina Group C S	Cobleskill Limestone Akron Dolostone Jnit H Camillus Formation - Unit G Syracuse Formation Unit F Unit E Unit D /ernon Formation Unit C Unit B Unit A		


Figure 2: Stratigraphic Column

Photograph 1: Rotated blocks of dolostone and shale at top of B2 salt bed in core from Hampton Corners hole 9456 (API #21576). Note near-vertical laminae within dolostone interval below 1,806.6 feet.

than the other interlayers. The unit consists of brownish-gray to brown dolostone interlayered with greenish-gray shale and commonly contains anhydrite as thin beds and nodules. Salt is also common as a filling in fractures, as lenses, and as beds at some locations. The dolostone layers are often laminated, but massive bedding and bedding disrupted by fracturing or fluid-escape structures are also common. Dolostone usually is the first rock unit encountered below the B-6 salt. In the cores, this dolostone is often severely fractured and brecciated, exhibiting blocks of dolostone rotated up into the salt such that the laminae are dipping at steep to near-vertical angles (Photograph 1).


The brecciated and rotated nature of the dolostone blocks seen in the Hampton Corners cores appears to correspond with large-scale breakage

Photograph 2: Retsof Mine wall in exploratory decline (ramp) to the lower salt beds (B-5 down through B-1) near the Fuller Shaft. Note breakage and rotation of shale and dolostone blocks, and apparent flowage of salt.

and rotation of shale and dolostone blocks and apparent flowage of salt that were observed by the authors in an exploratory slope tunneled from the B-6 salt to the lower salt levels (B-1 through B-5) near the Retsof Mine's Fuller Shaft (Photograph 2). The massive, angular rock fragments embedded within the B-2 salt at the slope (which was tunneled in the 1960s) are described in detail by Jacoby (1969).

The salt flowage structures, as well as the rotated blocks of shale and dolomite within the salts, are interpreted in this publication as being draginduced features associated with a décollement through the Vernon and Syracuse salts. The décollement apparently formed during the Appalachian Orogeny when compressional forces caused the Upper Devonian formations to slide to

Photograph 3: Red and green shale of the Vernon Unit C formation in core from Hampton Corners hole 9456 (API #21576). Note reddish-orange halite lenses, streaks, and fracture-fill.

the north-northwest by slippage along the salt horizons of the Salina Group (Engelder and Geiser, 1980; Murphy, 1981; Prucha, 1968). The bedrock units above the salt moved laterally, distances of perhaps thousands of feet, along the décollement (Engelder and Engelder, 1977). The lateral motion of the bedrock sliding at the salt levels likely resulted in the flow and drag-induced structures seen in the Hampton Corners rock cores and in the exploratory slope of the Retsof Mine.

Unit C

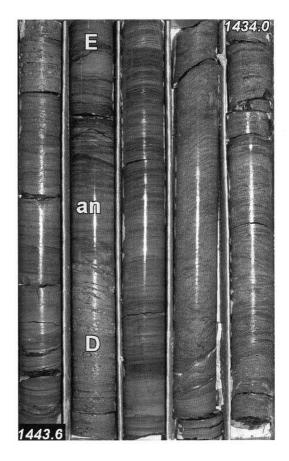
Unit C is generally a massive, greenish-gray shale with zones of dark red mottling (Photograph 3), which make up about 20 percent of the section. The appearance of dark red mottling in the Vernon Unit C shales in the Hampton Corners

Photograph 4: Roof of Retsof Mine where the B-6 salt had fallen away, revealing a polygonal network of reddishorange salt-filled fractures.

cores is consistent with the description provided by Luther (1894) for that horizon in the Livonia Salt & Mining Company shaft (API # 03277). Veins, streaks, and vertical fractures filled with reddish-orange halite are common throughout Unit C (Photograph 3). Conglomeratic zones of apparent rip-up clasts, clay clasts, or anhydrite pebbles occur occasionally and are often associated with fluid-escape structures. The contact with the underlying B-6 salt bed varies from sharp to brecciated, and vertical fractures filled with reddish-orange halite are common in the Vernon Unit C shale above the salt. Photograph 4 shows the underside of the shale where the B-6 salt had fallen away from the roof in the Retsof Mine.

Two regionally persistent, yellowish-brown, shaly dolostones occur in Unit C. Both appear as

low radioactivity zones in an otherwise higher gamma signature on the geophysical log. The upper dolostone is thin and lies roughly 40 feet beneath the top of Unit C, and the thicker, lower dolostone is roughly 40 feet above the B-6 salt (Plate 2). The lower dolostone appears to correspond to the "cb" marker that Rickard (1969) identified as an isochronous dolostone marker bed that can be correlated throughout Pennsylvania and New York. The "cb" horizon also appears as an evaporite bed in Michigan and Ohio. Anhydrite and halite appear as laminae, as lenses, and as a filling in fractures in the "cb" dolostone within the study area.


Syracuse Formation

Unit D

The Syracuse Formation consists of Units D, E, and F within the study area. The basal Unit D is distinguished from the other two units by the presence throughout most of the study area of two salt layers, which are locally known as the D-1 and D-2 salts. The salt in both of the Unit D salt beds is white to gray, clear and coarse crystalline. The intervening portion consists of interbedded, yellowish-brown dolostone and gray shale with bands of anhydrite, salt inclusions, salt-filled fractures, and fluid-escape structures.

The Syracuse D salts were the horizons mined by the Livonia Salt & Mining Company, based on the geologic log for the Livonia Shaft (API #03277). Luther (1894) had erroneously interpreted that the horizons mined at Livonia were the B salts that were being mined at all of the other salt mines in the region at the time. The bulk of the mine shafts and salt wells completed prior to the Livonia Shaft were sunk west of the main axis of the Genesee Valley, where the Syracuse Unit D salts were absent. The existence of any substantial salt beds in the region other than the Vernon B salts was simply not known in the late 1800s.

The interval of Unit D above the salt-bearing horizon is primarily an interlayered gray to black shale capped by yellowish-brown dolostone. The Unit D-capping dolostone has abundant salt inclusions which differentiate it from the overlying dolostone of Unit E (Photograph 5). This dolostone bed has a uniquely pitted, vuggy appearance in the cores. The top of Unit D was defined in the core as

Photograph 5: Pitted dolostone at top of Unit D, and basal anhydrite (**an**) of Unit E in core from Hampton Corners hole 9456 (API #21576).

the base of a persistent 0.4- to 1.2-foot interval of shaly, bluish-white to bluish-gray anhydrite that separated the non-salt-bearing dolostone of Unit E from the underlying units (Photograph 5). This anhydrite was apparently also observed by Luther (1894), who described it as a bluish-gray "marlyte" at the Livonia Shaft.

Livingston County lies at the northwestern limit of the Unit D salt beds; however, Unit D itself can be traced throughout the area (Gowan and Trader, 2000). By correlating gamma-ray log signatures for ISCO hole 8601 (API # 19685 on all plates) and Akzo hole 9443 (API # 21539 on all plates) it was determined that distinctive gamma-ray log signatures indicate the presence or absence of salt. Brine was encountered at hole 8601 while drilling

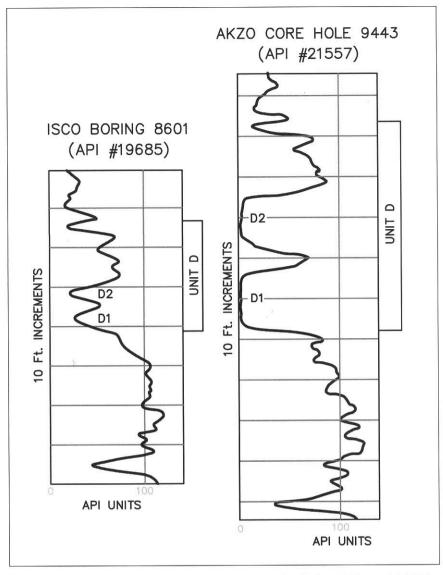


Figure 3: Comparison of Gamma Ray Signatures for Holes 19685 and 21557.

through the interval where the D-1 and D-2 salt beds would have been expected (Langill and Associates, 1987A). Both salt beds were present in the core from hole 9443. The gamma-ray log and core data for 9443 (Figure 3) indicate that the D-1 and D-2 beds are approximately 15 and 11 feet thick, respectively, and that the salt signatures on the gamma log are very clear and blocky in appearance. The corresponding gamma-ray signatures at the D-1 and D-2 horizons on the log for 8601 are weak and rounded. The lack of salt in Unit D at hole 8601 also corresponds with a significant reduction in the overall thickness of the unit. Unit D has a thickness of approximately 28 feet at the 8601 location and 51 feet at hole 9443. The Unit D thickness and geophysical log signatures for the salt beds were correlated for holes near the Retsof Salt Mine to determine the salt limit (Figures 4 and 5). The analysis indicates that the salt limit is reached when the Unit D thickness shrinks to approximately 30 feet.

The cumulative salt thickness within Unit D

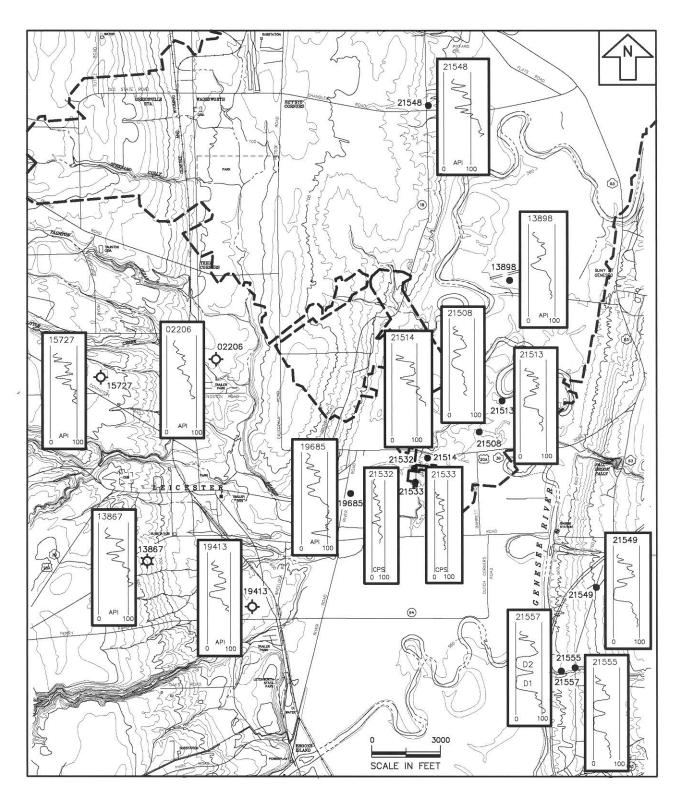


Figure 4: Regional Distribution and Gamma Signatures for the Drill Hole Data Presented on Figure 5.

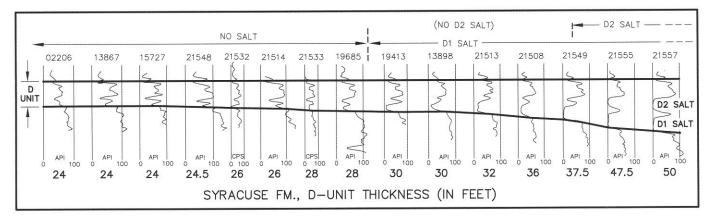


Figure 5: Comparison of Gamma Ray Signatures and Unit D Thickness for Holes in the vicinity of the Retsof Mine.

increases toward the southern end of the study area where the number of beds increases to three or four, as compared to the more typical two. The cumulative salt thickness is greatest at hole 14498 where it reaches a total thickness of 51 feet (Plate 8). The number of salt beds and total salt thickness diminishes to the north and west, with the D-2 disappearing near the eastern boundary of the Genesee Valley, and the D-1 disappearing on the western valley side, north of the Retsof Salt Mine. The lateral limit of salt is also reflected in the Unit D thickness map represented by Plate 9. That portion of Unit D, where salt is not present, generally maintains a thickness of 20 to 30 feet. The geophysical log signatures suggest that the dolostone and shale layers distributed within Unit D generally persist throughout the study area regardless of whether or not salt is present.

Natural brine was encountered at the Unit D salt horizon beyond the northern limit of salt and at hole 8601, just west of the Retsof Salt Mine collapse (Gowan and Trader, 2000). The northern brine pool at Piffard (Plates 8 and 9) was recognized as naturally occurring when the first operating brine wells were drilled in the district in the late nineteenth century (Bishop, 1886). The southern brine pool near River Road in Leicester was initially thought to have been created by the historical brine solution operations of the Phoenix Dairy Company. ISCO commissioned an investigation to evaluate the hazard of mining near the pool (Langill and Associates, 1986C) and to conduct an analysis establishing a barrier pillar around the hazard (Langill and Associates, 1987B). The data derived from those investigations provided the basis for determining that the southern brine was actually a natural pool that formed at the lateral limit of the Syracuse D salt long before the historical solution and rock salt mining operations occurred (Gowan and Trader, 2000).

The persistence of the nonsalt portion of the Unit D and the existence of brine near the northwestern salt limit raises questions regarding the origin of the geographic limit of the Syracuse salts observed today. It may be that the current extent of the salt represents the original margin of Syracuse salt deposition; however, it may also indicate that the salt was initially present but has been removed as the result of dissolution related to its updip position proximal to weathering forces and sources of circulating fresh water. The data suggest that salt had been deposited beyond the current limit.

Units E and F

Units E and F of the upper portion of the Syracuse Formation are lithologically similar. They are both predominantly dolostone with relatively minor shale interbeds, which are more common near the top of each unit. The boundary between Unit E and Unit F is in fact taken at the top of a shale sequence as indicated in the correlations conducted southwest of the study area by Rickard (1969). Both Unit E and Unit F contain anhydrite and gypsum in the shale section, and they are generally devoid of salt except for a few salt-filled fractures, lenses, and inclusions in the lowest one-fifth of Unit E.

Camillus Formation

The Camillus Formation, which is also known as Unit G of the Salina Group, is well defined by the bracketing dolostone horizons of the Bertie Group above and the Syracuse Formation below. The upper contact is defined in the core at the position where the shale, or interbedded shale and dolostone, of the Camillus Formation changes over to all dolostone in the Bertie Group. An anhydrite layer caps the top of the Camillus Formation at most locations. The lower contact is not always as well defined on the natural gamma-ray log due to a greater number of dolostone interbeds near the base of the Camillus Formation.

BERTIE GROUP

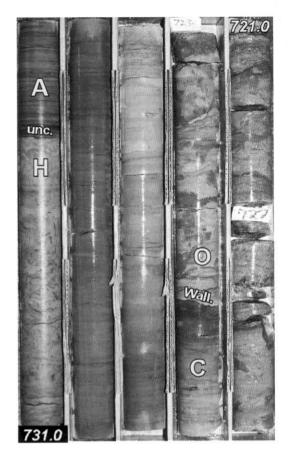
The nomenclature of the Upper Silurian rock units above the Camillus Formation is in flux and does not appear to be clearly resolved. Rickard (1975) identified the Bertie Formation as Unit H of the Salina Group, and he included the Fiddlers Green, Scajaquada, and Williamsville dolostones, in ascending order, within the Bertie Formation. Rickard (1975) placed the discontinuous Rondout Formation (Uppermost Silurian) above the Bertie Formation and noted that the Rondout Formation included the Cobleskill-Akron and Chrysler members. The Cobleskill Limestone and the Akron Dolostone have been considered lateral equivalents, with the Akron primarily in western New York and the Cobleskill occurring in central and eastern New York (Ciurca and Hamell, 1994; Rickard, 1969, 1975). Ciurca (1982, 1990), and Ciurca and Hamell (1994) have suggested that the Bertie Formation be raised to group status in order to combine all of the Upper Silurian eurypterid-bearing rocks in western New York into one package. The Bertie Group of Ciurca and Hamell (1994) incorporates, in ascending order, the Fort Hill, Oatka, Fiddlers Green, Scajaquada, Williamsville, Akron-Cobleskill, and Moran Corner.

The Bertie Group framework was used for the present investigation; however, only the discontin-

uous Cobleskill Limestone and the Akron Dolostone were differentiated from the rest of the Bertie Group. The remainder of the Bertie Group beneath these formations is referred to in this study as Unit H, which originally encompassed all of the Bertie rock units up through the Williamsville (Rickard, 1975). Further work is necessary on the Hampton Corners rock cores in order to differentiate the buried Bertie Group rocks of that area and correlate them with those in the outcrop belt to the north.

The lower Unit H in the rock cores consists of laminated dolostone and dolomitic shale with anhydrite nodules and a petroliferous odor. Oil shows typically oozed from the core at various intervals for several days after core retrieval. The lower Unit H is separated from the upper Unit H in the study area by an interval of dolomitic shale that has a characteristically high gamma-ray peak with respect to the more typical, low-gamma dolostones of Unit H. This mid-Bertie, dolomitic shale interval rests on a 4- to 10-foot-thick anhydrite layer and typically contains disseminated granules, pebbles, and nodules of chert, gypsum, anhydrite, and sphalerite. The most regionally correlatable feature of the entire Bertie Group lies within this mid-Bertie dolomitic shale interval and is identified by Rickard (1969) as the "hp" (high peak) marker (Plate 2). Interestingly, this marker does not appear to translate to anything of note in the cores. The "hp" marker apparently coincides with the first appearance of pyrite or marcasite-like films, downsection, on the dark, carbonaceous partings between beds.

The upper half of Unit H consists of laminated to massive dolostone displaying desiccation features, laminae offset (possibly due to filling of mudcracks), carbonaceous bed partings, and frequent bands of apparent rip-up clast breccias and clay pebble conglomerates (Photographs 6a and 6b). It is possible that some of the carbonaceous partings may be the remains of eurypterids that are so characteristic of the Bertie in outcrop or in quarries. The upper half of Unit H is commonly vuggy, and the core also displayed oil shows oozing from the core.


The top few feet of Unit H in the Hampton Corners area is distinctly different in appearance from the remainder of the Bertie Group. It consists of light olive gray, fine-grained sandstone, rather than dolostone, with characteristic black wisps of mottling (possible root bioturbation) and distinct,

Photograph 6a left: Rip-up clast breccia (**br**) in core of upper Unit H of the Bertie Group from Hampton Corners hole 9453 (API #21572).

Photograph 6b right: Laminae offset (**off.**) and dark, carbonaceous partings within dolostones of the upper Unit H of the Bertie Group. Note unconformity (**unc.**) at the base of the olive grey siltstone with wispy, black mottling. Core is from Hampton Corners hole 9441 (API #21559).

unconformable upper and lower contacts marked by sudden color change to the more typical dark yellowish-brown and brownish-gray of the rest of the Bertie Group (Photographs 6b and 7). Oval cross sections of structures that may be fossil plant stems or roots were observed in the core of this interval from Akzo core #9453 (API #21572). No petroliferous odors or oil shows were observed in this mottled horizon. This upper horizon of Unit H was described at the Livonia Shaft as a very light gray sandstone with "no lines of bedding" (Luther,

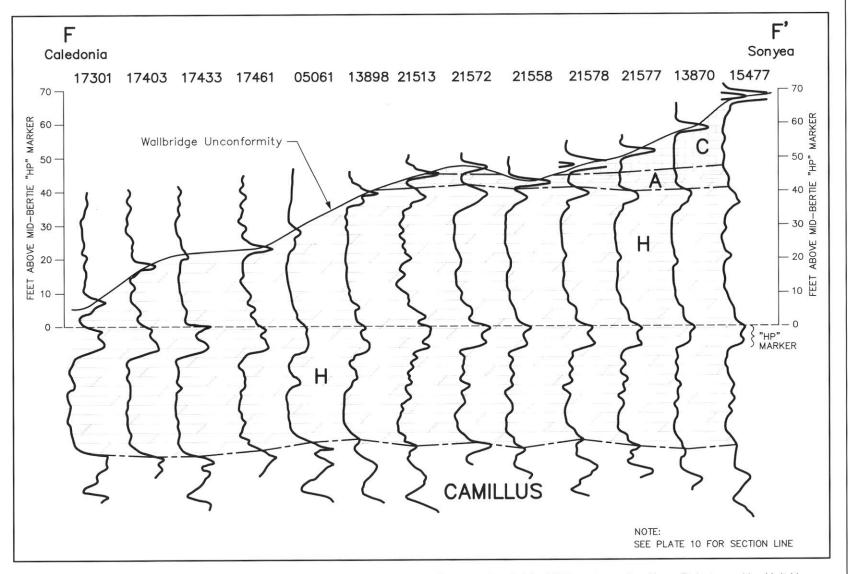
Photograph 7: Bertie Group transition from the wispy-mottled top of Unit H (H), through Akron (A) and Cobleskill (C) Formations, and into the cherty Edgecliff Member of the Onondaga Formation (O), above the Wallbridge Unconformity (Wall.). Core is from Hampton Corners hole 9443 (API #21557).

1894). "Gas and oil" were also described by Luther (1894) as being present in the rocks above and below this sandstone but not within it, just as is the case in the Hampton Corners rock core.

The rock core from the 13 core hole locations at Hampton Corners revealed that the majority of the Bertie Group below the Cobleskill Limestone appeared to be barren of macrofossils, although further inspection may prove otherwise. An exception to this is at hole 9455 (API #21575), where an apparently allochthonous, round (in cross section)

fragment of tabulate coral, approximately 0.15 feet in diameter, was noted at a position 21 feet below the top of the aforementioned wispy-mottled, light gray top of Unit H. No tabulate corals or macrofossils of any kind were noted within Unit H at any of the other 12 core hole locations. It is interesting to note that Luther (1894) reported several Favosites coral fragments within the Bertie package at the Livonia Shaft. Just as in hole 9455, Luther's Favosites were encountered 21 feet below the top of the "very light gray sandstone." The apparent sparse distribution of solitary tabulate coral fragments at the exact same horizon within an otherwise barren section of Bertie Group rocks over six miles apart may be further evidence of seismite or tsunamite deposition suggested by Ciurca and Hamell (1994).

The Cobleskill Limestone and Akron Dolostone, which lie above Unit H, are discontinuous in the study area. These two units, while typically treated as lateral equivalents, or even as diagenetic forms of the same formation, are differentiated vertically in this publication based on examination of the Hampton Corners rock core. The Akron Dolostone, which lies between Unit H and the Cobleskill Limestone, was differentiated from the Cobleskill primarily by the absence of limestone and the presence of a strong, petroliferous odor. Neither the Cobleskill nor the underlying, wispy-mottled top of Unit H gave off any petroliferous odors. The strong, petroliferous odor of the Akron Dolostone in Livingston County is consistent with the fact that the formation has been a commercial oil producer farther west in Chautauqua County, New York (Copley and Gill, 1983). The Cobleskill Limestone was identified as such based on the fact that it was essentially the only limestone encountered within the Bertie Group. Brachiopods, which may prove useful for age dating, were occasionally observed in the cores through the Cobleskill, but not within the Akron. The Cobleskill contained occasional. thin, dolomitic intervals at some locations.

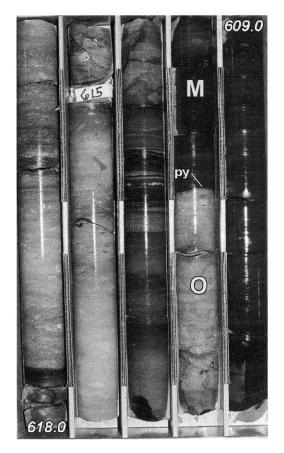

Recognizable unconformities, commonly consisting of sharp, irregular contacts overlain by conglomeratic or brecciated horizons, and occasionally underlain by apparent rooting structures, are observable between each of the upper Bertie Group units (the wispy-mottled top of Unit H, the Akron Dolostone, and the Cobleskill Limestone). The Akron Dolostone maintains a relatively consistent thickness of 3 to 5 feet in the cores from Hampton Corners, whereas the Cobleskill Limestone ranges in thickness from zero to 10 feet. Both of these units, along with the wispy-mottled top of Unit H, display a distinct pattern on the gamma-ray logs.

The upper limit of the Bertie Group is clearly defined in the study area by a very high gammaray signature (Plate 2) at the Wallbridge Unconformity (Brett and Ver Straeten, 1994). In Livingston County, the Wallbridge Unconformity marks the boundary between the Upper Silurian and the Middle Devonian. The rock core from the Hampton Corners area revealed that the erosive down-cutting at the Wallbridge Unconformity had removed the Cobleskill in the central portion of the Hampton Corners area. In fact, based on the distinctive pattern on the gamma-ray logs associated with the upper Bertie Group at Hampton Corners, the erosion at the Wallbridge Unconformity completely removed the Cobleskill and Akron formations, as well as the upper Unit H, north and northwest of Hampton Corners.

Rickard (1989) constructed a paleogeologic map on the top of the Upper Silurian that indicated the presence of the eroded Rondout Formation on the east and the Bertie Formation on the west side of the study area. These findings by Rickard are revised somewhat by the current study based on the core results and the utilization of the nomenclature proposed by Ciurca and Hamell (1994). This revision is represented in the paleogeologic and paleo-relief map (Plate 10).

Vital to the construction of Plate 10 was the relationship between the gamma-ray logs and the rock cores of the Hampton Corners area. The gammaray log pattern for the Bertie Group was extrapolated beyond Hampton Corners by the interpretation of existing gamma-ray logs. In this manner, it was determined which formation of the Bertie Group (Unit H, Akron, or Cobleskill) was present directly beneath the Wallbridge Unconformity at the base of the Onondaga Formation.

The paleo-relief aspect of Plate 10 is predicated on the assumption that the "hp" marker represents a relatively level depositional platform upon which the subsequent formations of the Bertie were deposited. Indeed, no physical evidence in the Hampton Corners cores was present to indicate an unconformable surface at the position of the "hp" marker of the mid-Bertie. The thickness of the


Bertie Group above the "hp" marker was mapped to determine the paleo-relief of the pre-Onondaga depositional surface that was created via erosion at the Wallbridge Unconformity.

The Wallbridge Unconformity was an irregular, subaerial erosional surface that in places left a soil horizon with evidence of possible root structures and gravel lag deposits in the Livingston County area. The paleogeologic and paleo-relief map generally shows that the surface was highest to the south and east where the Cobleskill Formation occupied the local highlands. The surface generally sloped down to the north and west where the Cobleskill was stripped away, followed by the Akron and the upper portion of Unit H, with nearly 60 feet of relief. This interpretation is also illustrated on Figure 6, which represents the correlation of gamma-ray signatures using the "hp" mid-Bertie marker as a datum. The section line, shown on Plate 10, proceeds from Caledonia in the north (F), where the Bertie rock package above the "hp" marker is thinnest, southward to Sonyea (F') where this interval is at its thickest. The generalized surface shown on Plate 10 has a broad, dendritic pattern that suggests the paleo-drainage that must have existed. Although the generalized paleo-relief map likely reflects the general trends and drainage patterns, the actual surface was probably much more irregular with locally steeper slopes as suggested by mapped areas where the data density is greater (Plate 10).

ONONDAGA FORMATION

The Onondaga Formation is represented in the study area by four members, which consist of the basal Edgecliff Member overlain successively by the Nedrow, Moorehouse, and Seneca members. The Onondaga Formation is bounded at the base by the previously noted Wallbridge Unconformity (Brett and Ver Straeten, 1994) and at the top by an unconformity at the Marcellus Formation contact. Both unconformities are regional marker horizons showing distinct, high gamma-ray counts (Plate 2).

The entire section of cherty (25 to 75 percent chert nodules) limestone at the base of the Onondaga is mapped here as the Edgecliff Member, as suggested by Brett and Ver Straeten (1994). In the Hampton Corners cores, the Edgecliff is

Photograph 8: Transition from Seneca Limestone Member of the Onondaga Formation (\mathbf{O}) to the black shales of the Marcellus Subgroup (\mathbf{M}). Note thin pyrite lag (\mathbf{py}) at the unconformity between the two rock units. Core is from Hampton Corners hole 9444 (API #21555).

separated from the more argillaceous, darker gray, overlying Nedrow Member by a 0.5-foot to 1.0foot-thick bed of grayish olive green, glauconitic, calcareous shale. This glauconitic bed, which is intensely burrowed and contains occasional pyrite modules, is unique within the Onondaga Formation, if not the entire Devonian sedimentary package within Livingston County. The glauconitic shale bed at the Nedrow base likely represents an unconformity related to a deepening event and sediment starvation, as opposed to the subaerial, exposure-induced Wallbridge Unconformity at the Onondaga base. The argillaceous nature of the Nedrow produces a distinctively higher natural

gamma-ray signature (Plate 2), which was relied on by Rickard (1989) as a regional marker.

The Nedrow Member grades vertically into the overlying, chert-bearing Moorehouse Member. The contact is indistinct and can be taken from the geophysical log where the high gamma-ray reading of the Nedrow Member drops to levels more typical of most of the rest of the Onondaga Formation. The upper contact of the Moorehouse Member is clearly defined by the distinctive geophysical log signature of a thin (0.2 to 0.4 feet) claystone or metabentonite layer known as the Tioga "B" Bentonite or Onondaga Indian Nation Bentonite (OIN) (Brett and Ver Straeten, 1994). The Tioga "B" has major regional significance as an isochronous marker bed.

The Seneca Member contains less chert than the underlying Moorehouse Member. The top of the Seneca Member is defined by an unconformable, abrupt contact beneath a thin, pyrite and shell hash layer (Photograph 8). The upper layers of the Seneca include black shale layers, although the rugose corals present in the Seneca Member are absent in the overlying shales of the Marcellus Formation.

MARCELLUS SUBGROUP

The distinctly black, carbonaceous Marcellus Shale lies beneath the Stafford Limestone and rests uncomfortably on top of the Onondaga Formation. Ver Straeten et al. (1994) suggest that the Marcellus Shale, which is known formally as the Marcellus Formation, should be raised to a subgroup status due to distinct differences in faunal assemblages relative to the units above and below it. The Marcellus Formation in the study area is composed of the Oatka Creek Member and Union Springs Member, both of which would be raised to formation status by Ver Straeten et al. (1994). This nomenclature is adopted for the present study.

The lower limit of the Oatka Creek Formation is defined in the study area as the base of a thin, brownish-black, styliolinid grainstone. This grainstone appears to be the western extension of the Cherry Valley Limestone. Ver Straeten et al. (1994) indicate that both the Cherry Valley Limestone and the underlying Union Springs Formation (which also contains abundant styliolinids) pinch out west of Rochester and are only sporadically known in the subsurface west of the study area.

HAMILTON GROUP

The Hamilton Group of the Middle Devonian is locally comprised of the Skaneateles, Ludlowville, and Moscow formations. This group, like the overlying group of the Upper Devonian, represents a cycle initiated by the deposition of the black shales of the Marcellus Subgroup on an eroded surface at the top of the Onondaga Formation. The overlying shales are dark gray, calcareous, and occasionally separated by thin limestone beds.

The top units of the Moscow Formation appear at the surface in and around the Hampton Corners Mine site along with the overlying units of the Genesee, Sonyea, and West Falls groups. The exposed unit contacts were mapped and correlated with the bedrock cores to generate a bedrock geologic map (Plate 11). Similar mapping was not completed for the rest of the investigation area.

Skaneateles Formation

The Skaneateles Formation consists of the Levanna Shale and underlying Stafford Limestone. The boundaries of the Levanna are well defined by the regionally persistent Centerfield Limestone at the top and the Stafford Limestone at the base. The Levanna Shale is dark gray to olive black and is interlayered with limestone beds within the central portion of the unit. The limestone beds are 1.0 to 6.0 feet thick but are apparently laterally discontinuous. The basal Stafford Limestone is generally 2 feet or less in thickness and also discontinuous in the site area; however, it is recognized as a marker bed throughout western New York (Rickard, 1989).

Ludlowville Formation

The Ludlowville Formation consists of the basal Centerfield Limestone Member overlain by the Ledyard, Wanakah, and Jaycox Shale members. The shale interval is well defined on the geophysical logs by the bracketing Centerfield and Tichenor limestones at the base and top of the Ludlowville, respectively.

The fine-scale, stratigraphic sequences from the Jaycox Member were described by Mayer (1994) for the type section at Jaycox Creek, which is located in the Genesee Valley north of the study area. The fine-scale stratigraphy of the Jaycox Creek Section

was not correlated with the cored lithologies during the present investigation; however, the calcareous, fossiliferous Jaycox Member caused a distinctive drop on the gamma-ray log that was relied on to define the unit throughout the area.

Mayer (1994) places the Stafford Shale Member, which consists of a zone barren of fossils, between the Jaycox Shale and the underlying Wanakah Shale. The basal, calcareous zone appears as a relatively minor drop on the natural gamma-ray log. The contact between the Jaycox and the Wanakah that was selected in the cores follows Mayer (1994) and is apparently slightly higher in the section than the contact chosen by Rickard (1989), which was based on the geophysical log signature from the McBride well (API # 11403) on the west side of the Genesee River Valley in the town of Leicester.

Moscow Formation

The Moscow Formation consists of the basal Tichenor Limestone overlain by the Kashong and Windom Shale members. The Kashong and Windom shales are both dark gray and generally appear quite similar in the cores with both containing scattered fossils and distinct fossil hash layers. The primary differences between the two shale beds is the presence of ambocoellid brachiopods in the Windom Shale that are not present in the underlying unit, and the apparent increase in fossil hash layers toward the base of the Kashong Shale. Some of the fossil hash layers have been correlated regionally (Brett and Baird, 1994), but no attempt was made during the present investigation to correlate those observed in the core with those identified by others. The base of the Windom Shale is defined by a persistent 0.2-foot interval of gravishblack, subangular phosphate pebbles that is locally known as the "Little Beards Creek Phosphate Bed." Brett and Baird (1994) associate this bed with two disconformities.

No distinct geophysical log markers were noted in the shale horizons, though the natural gammaray drops off near the base of the Kashong Shale in apparent response to an increase in carbonate content. The basal Tichenor Limestone produces a notable and persistent drop in natural gamma-ray. The Tichenor Limestone is dark gray and highly fossiliferous.

GENESEE GROUP

The Upper Devonian Genesee Group represents a depositional cycle and consists of the black Geneseo Shale overlain by the dark gray Penn Yan and West River shales. The dark gray shales are separated by the thin Genundewa Limestone, which had an average thickness of 2.3 feet in the core holes that intersect that unit between the Genesee Valley and Conesus Lake. Both shale beds contain fossils, calcareous concretions, and septarian nodules, though the Penn Yan Shale has a slightly greater abundance of these features than the overlying West River Shale. The basal Geneseo Shale typically consists of two black shale layers separated by an interval of thin limestone beds and fossil hash horizons containing styliolinids and brachiopods. The Leicester Pyrite, which is recognized as a persistent marker at the erosional base of the Geneseo Shale (Kirchgasser et al., 1994), was present as burrow casts or fossil replacements in all of the cores.

The Genundewa Limestone appears as a distinctive, persistent, sharp drop in the natural gamma-ray reading. The increase in the geophysical log signature in the Geneseo Shale was also persistent, though less distinctive, than the Genundewa marker. The Geneseo Shale signature is quite irregular with multiple spikes as the apparent result of variations in the presence of the fossil hash zones.

SONYEA GROUP

The Upper Devonian Sonyea Group, like the overlying West Falls Group, is a cyclic sequence defined by the basal, brownish-black Middlesex Shale overlain by the interbedded gray and brownish-black Pultney Shale and capped by the dark gray Cashaqua Shale. Fossils in the section were relatively rare, though occasional pelecypod, cephalopod, brachiopod, and plant fragments were encountered. The Pultney and Middlesex shales have nearly indistinguishable appearances on the natural gamma-ray, but their combined signature is a very distinctive, highly irregular series of spikes on the log.

The boundary between the Cashaqua Shale and

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York the overlying Rhinestreet Shale is marked by a small drop in the natural gamma-ray signature, which did not persist very far down into the bed. This drop in the natural gamma-ray may represent an increase in carbonate content associated with the Shurtleff Septarian Horizon that is visible in outcrops (Kirchgasser et al., 1994) though it is not evident in the core. A closer look might be fruitful.

WEST FALLS GROUP

The Upper Devonian West Falls Group is represented by the Rhinestreet Shale and the overlying Hatch Shale. Both shales appear in the core as interlayered gray and brownish black shale though the Rhinestreet is predominantly brownish black and highly fissile toward the base, and the Hatch contains argillaceous limestone bands and concretions. These two shales represent the lower portion of a typical cyclic sequence in the Upper Devonian of western New York that consists of a basal black shale overlain by a gray shale and a general coarsening-upward sequence capped by the black shale of the succeeding cycle (Kirchgasser et al., 1994).

The Rhinestreet Shale is a persistent marker bed that extends throughout western New York (Kirchgasser et al., 1994). This unit is one of the major, basin-wide marker beds that defines the boundary between lithologic groups in the Upper Devonian in New York (Rickard, 1975; Woodrow, 1985; Woodrow et al., 1989). The natural gamma-ray log indicates a moderately high gamma-ray count in the Rhinestreet Shale that generally falls off in the ascent through the overlying Hatch Shale. Insufficient data are available to evaluate the lateral continuity of this signature. The Hatch Shale is known to be discontinuous to the west where it grades laterally to the Gordeau Shale, which is mapped above the Rhinestreet Shale in Letchworth Gorge on the west side of the Genesee Valley (Kirchgasser et al., 1994).

STRUCTURE

A structural contour map was generated for the top of the Tioga Bentonite (Plate 12). This map shows a surface that dips southward at a rate of approximately 53 feet per mile (0.58°). The gently undulating surface does not reveal any significant structures, though minor folds or faults could be present but are not detectable due to the broad spacing of the data and the fact that the elevations provided for many of the oil and gas wells are estimates from topographic maps. The estimated elevations likely produced errors of as much as 20 feet that restrict the interpretation to a generalized representation of the Tioga Bentonite surface.

The Tioga Bentonite was chosen for structural analysis due to its' being a distinctive marker that is ubiquitous throughout the area except where removed by glacial scouring in the Genesee Valley. The bed is also an isochronous marker that has been correlated across several states, and the feature appears to be embedded in a continuous depositional sequence within the Onondaga Formation. Other distinctive markers with a broad regional distribution would be suitable for structural mapping for a much broader area, but many of these areally persistent markers, such as the top of the Onondaga Formation and the top of the Bertie Group, represent unconformable surfaces that can obfuscate the interpretations on a local scale. This problem arose during the investigation of the Retsof Mine collapse, when various researchers developed structural interpretations of the collapse area from different marker horizons, most of which were unconformities. The results of the various interpretations were contradictory in many cases and did not reveal a defensible structural anomaly associated with the collapse.

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

ACKNOWLEDGEMENTS

The authors would like to thank Akzo Nobel Salt, Inc. and American Rock Salt, Inc. for the opportunity to publish much of the data contained herein. We greatly appreciate the talent of Terrel Broiles in the preparation of many of the figures and plates. We are also thankful to the staff of Alpha Geoscience, especially John Nadeau, Diane Welch and Carol Eisler. A debt of gratitude is owed to our significant others who have been ever helpful and supportive throughout the years of work leading to this publication.

LITERATURE CITED

- Alpha Geoscience. 1995. Geology/Hydrogeology of the Proposed Akzo Nobel Rock Salt Mine, Hampton Corners, New York. Unpublished Report to Akzo Nobel Salt Inc., 29 pp.
- Bishop, I. P. 1886. Salt Wells of Western New York. Fifth Report of the New York State Geologist, State Museum of Natural History, Albany, New York, pp. 12-47.
- Brett, C. E. and G. C. Baird. 1994. Depositional Sequences, Cycles, and Foreland Basin Dynamics in the Late Middle Devonian (Givetion) of the Genesee Valley and Western Finger Lakes Region. <u>Field Trip Guidebook, New York State Geological Association, 66th Annual Meeting</u>, pp. 505-586.
- Brett, C. E. and C. A. Ver Straeten. 1994. Stratigraphy and Facies Relationship of the Eifelian Onondaga Limestone (Middle Devonian) in Western and West Central New York State. Field Trip Guidebook, New York State Geological Association, 66th Annual Meeting, pp. 221-269.
- Ciurca, S. J. Jr. 1990. Eurypterid Biofacies of the Silurian-Devonian Evaporite Sequence. Niagara Peninsula, Ontario, Canada and New York, New York State Geological Association Annual Meeting, pp. D1-D30.
- Ciurca, S. J. Jr. 1982. Eurypterids, Stratigraphy, Late Silurian - Early Devonian of Western New York State and
- Ontario, Canada. <u>New York State Geological Associa-</u> tion, 54th Annual Meeting, pp. 99-120.
- Ciurca, S. J. Jr. and R. D. Hamell. 1994. Late Silurian Sedimentation, Sedimentary Structures and Paleoenvironmental Settings within an Eurypterid-Bearing Sequence [Salina and Bertie Groups], Western New York State and Southwestern Ontario, Canada. <u>Field Trip Guidebook</u>, <u>New York State Geological Association, 66th Annual Meeting</u>, pp. 457-488.
- Copley, D.L. and B. Gill. 1983. *The Akron Dolostone (Bass Islands) Oil Trend in Western New York*. <u>Ontario Petro-leum Institute, 22nd Annual Conference, London, Ontario.</u>
- Dunn Corporation. 1992. *Hydrogeologic Report for the Akzo Ash Processing Plant.* Unpublished Report to Akzo Salt, Inc., 35 pp.
- Engelder, T. and R. Engelder. 1977. Fossil Distortion and Décollement Tectonics on the Appalachian Plateau. <u>Geology</u>, vol. 4, pp. 457-460.

- Engelder, T. and P. Geiser. 1980. On the Use of Regional Joint Sets as Trajectories of Paleostress Fields, during the Development of the Appalachian Plateau, New York. Journal of Geophysical Research, vol. 85, pp. 6319-6341.
- Eyermann, T. 1979. Drilling Report, Well 7901, Power Borehole - Retsof Mine. Unpublished Report to International Salt Company, 10 pp.
- Gowan, S. W. and S. M. Trader. 2000. Mine Failure Associated with a Pressurized Brine Horizon: Retsof Salt Mine, Western New York. Environmental and Engineering Geoscience, vol. VI, no. 1, pp. 57-70.
- Jacoby, C.H. 1969. Correlation, Faulting, and Metamorphism of Michigan and Appalachian Basin Salt. <u>American</u> <u>Association of Petroleum Geologists Bulletin</u>, vol. 53, no. 1, pp. 136-154.
- Kirchgasser, W. T., D. J. Over, and D. L. Woodrow. 1994. Frasnian (Upper Devonian) Strata of the Genesee River Valley, Western New York State. Field Trip Guidebook, New York State Geological Association, 66th Annual Meeting, pp. 325-356.
- Langill, R. F. and Associates. 1990. Subsidence and Ground Water Inflow at the Sterling Mine, Re: Retsof Mine. Unpublished Report to International Salt Company, 23 pp.
- Langill, R. F. and Associates. 1987A. Investigation of the Phoenix Dairy Co. Site Near Cuylerville, New York. Unpublished Report to International Salt Company, 7 pp.
- Langill, R. F. and Associates. 1987B. *Protection Pillar for the Phoenix Dairy Co. Brine Well and Cavity*. Unpublished Report to International Salt Company, 8 pp.
- Langill, R. F. and Associates. 1986A. Investigation and Evaluation of the Barbara Shaft Core from the Sterling Mine Near Cuylerville, New York. Unpublished Report to International Salt Company, 10 pp.
- Langill, R. F. and Associates. 1986B. Geohydrologic Conditions at the "A" Shaft Area Near the Sterling Mine. Unpublished Report to International Salt Company, 7 pp.
- Langill, R. F. and Associates, 1986C. *Detecting Subsurface Hazards Near Cuylerville, New York.* Unpublished Report to International Salt Company, 12 pp.
- Langill, R. F. and Associates. 1981. Geological and Hydro-

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York *logical Conditions of the Sterling Mine Near Cuylerville, New York.* Unpublished Consulting Report to International Salt Company, 12 pp.

- Luther, D. D. 1894. *Report on the Geology of the Livonia Salt Shaft*. <u>47th Annual Report of the New York State Museum</u>, pp. 217-324.
- Luther, D. D. 1898. The Brine Springs and Salt Wells of the State of New York and the Geology of the Salt District. <u>United States Geological Survey</u>, 16th Annual <u>Report of State Geologist</u>, pp. 175-226.
- Mayer, S. T. 1994. Field Studies of the Middle Devonian Ludlowville - Moscow Sequence in the Genesee and Seneca Valleys, New York State. Field Trip Guidebook, New York State Geological Association, 66th Annual Meeting, pp. 491-503.
- Murphy, P. J. 1981. *Detachment Structures in South-Central New York*. <u>Northeastern Geology</u>, vol. 3, No. 2, pp. 105-115.
- New York State. 1938. Geological Column and Shaft Log -Fuller Shaft, Retsof Mining Company, New York State Geological Survey, Open File No. 8X084.
- Open File Report No. 6X782. New York State Geological Survey, State Museum, Albany NY 12230, 518 474-5810
- Prucha, J. J. 1968. Salt Deformation and Décollement in the Firtree Point Anticline of Central New York. Department of Geology, Syracuse University. Elsevier Publishing Company, Amsterdam, Netherlands, pp. 273-299.
- Rickard, L. V. 1989. Stratigraphy of the Subsurface Lower and Middle Devonian of New York, Pennsylvania, Ohio, and Ontario, New York State Museum, Map and Chart Series, No. 39; 59 pp. and Plates.

- Rickard, L. V. 1975. Correlation of the Silurian and Devonian Rocks in New York State, New York State Museum, Map and Chart Series, No. 24; 16 pp.
- Rickard, L. V. 1969. Stratigraphy of the Upper Silurian Salina Group New York, Pennsylvania, Ohio, Ontario, New York State Museum, Science Service Map and Chart Series, No. 24; 16 pp. and Plates.
- Szyprowski, S. 1967. Preliminary Report on Hydrogeology of Hampton Corners Area, Livingston County. Unpublished Consulting Report to International Salt Company, 74 pp.
- Ver Straeten, C. A., D. H. Griffing and C. E. Brett. 1994. The Lower Part of the Middle Devonian Marcellus "Shale," Central to Western New York State: Stratigraphy and Depositional History. Field Trip Guidebook, New York State Geological Association, 66th Annual Meeting, pp. 261 - 322.
- Werner, C. J. 1917. A History and Description of the Manufacturing and Mining of Salts in New York State. Tobias A. Wright Press, Huntington, New York, pp. 105 -141.
- Woodrow, D. L. 1985. Paleogeography, Paleoclimate, and Sedimentary Processes of the Late Devonian Catskill Delta. In D. L. Woodrow and W. D. Sevon (eds.), <u>Geological Society of America Special Paper</u>, 201, pp. 51-63.
- Woodrow, D. L., J. M. Dennison, F. R. Ettensohn, W. T. Kirchgasser, and W. D. Sevon. 1989. Middle and Upper Devonian Stratigraphy and Paleogeography of the Central and Southern Appalachians and Eastern Midcontinent, U.S.A. In N. J. McMillan, A. F. Emboy, and D. J. Glass (eds.), <u>Devonian of the World</u>, Canadian Society of Petroleum Geologists Memoir, vol.14, No. 3, pp. 277-301.

APPENDIX A

CORE LOG OF AKZO

CORE HOLE 9455 (API #21575)

di.

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

ROCK LOG LEGEND

ROCK QUALITY PARAMETERS

F - 3

F - 5

Grades of Decomposition

D - 1	Fresh Rock

- D 2 Slightly Altered Rock (Joints Stained)
- D 3 Moderately Altered Rock (Matrix somewhat weakened)
- D 4 Highly Altered Rock (Matrix weak)
- D 5 Residual Soil (Soil-like saprolite)

Grades of Strength

- S 1 Strong (Metallic sound, breaks with difficulty with hammer)
- S 2 Moderately Strong (Dull sound; breaks with moderte hammer blow)
- S 3 Weak (Cuts easily with knife)

N-3 Dark Gray

S - 4 Very Weak (Breaks with finger pressure)

Grades of Fracturing

F - 1	Massive (Fracture spacing greater than 3 feet)
F - 2	Moderately Jointed (Fracture spacing 8 inches to 3 feet)

- Very Jointed (Fracture spacing 4 inches to 8 inches)
- F 4 Extremely Jointed (Fracture spacing 2 inches to 4 inches)
 - Crushed (Fracture spacing less than 2 inches)

RELATIVE HARDNESS SCALE

N-9 White

Very Hard - Cannot be scratched with steel blade. Hard - Scratches with difficulty with steel blade. Moderately Hard - Easily scratched with steel blade, but not with fingernail. Soft - Scratches with fingernail.

ROCK QUALITY DESIGNATION (R.Q.D.) is based on a modified core logging procedure which, in turn, is based indirectly on the number of fractures and the amount of softening or alteration in the rock mass as observed in the rock cores. Instead of counting the fractures, an indirect measure is obtained by summing up the total length of core recovered - but counting only those pieces of core which are four inches (10 cm) in length or longer, and which are hard and sound. This procedure obviously penalizes the rock where recovery is poor. This is appropriate because poor core recovery usually indicates poor quality rock. It has been found that there is a good relationship between the numerical values of the R.Q.D. and the general quality of the rock for engineering purposes. This relationship is as follows:

0 - 25%	Very Poor	D.U. Deere, (1968) Rock Mechanics in Engineering
25 - 50%	Poor	Practice, Stagg & Zienkiewicz, ed., Wiley
50 - 75%	Fair	
75 - 90%	Good	
90 - 100%	Excellent	
		Ϋ́
		ROCK COLOR SCALE
Neutral Scale		
N-1 Black	N-4 Med. Dark Gra	ay N-7 Light Gray
N-2 Grayish Black	N-5 Medium Gray	N-8 Very Light Gray

N-6 Med. Light Gray

ALPHA GEOSCIENCE

CORE LOG

Version Date 4/14/95

1.35								
	1					Ho	le No	. 9455
				Client Akzo Nobel Salt, Inc. Logged by Steve Trader/Steve Winkley Date Logged 2/2/1995-3/1				1 of <u>34</u>
Δ		Н		Project Hampton Corners Drilling Co. Longyear		Depth		1976.3'
λE	OSC	IENC	E	Project No. 94124 Driller Raymond Quesenberry/Gerry Creggler Rig Type 44-TM Location Livingston Co., NY Started 1/25/1995 Finished 2/23/1995	/			
		, <u> </u>	1	Location Livingston Co., NY Started 1/25/1995 Finished 2/23/1995	11 1	_ Cor	e Dia	. <u>2 3/8" (</u> HQ
KUN NO.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
			-	Drilled to 40' with tricone roller bit; cored with PQ rock bit from 40-200' using 40 feet of PW rods as casing; removed PW casing and set surface casing (PQ rods) to 200 feet.				
			- 10 	0-34' Till				
			20 -					
			30					ſ
			- - - 40	34.0-75.2 Shale; medium dark gray (N4), brownish black (5 YR 2/1); interlayered; claystone; laminated: brownish black intervals; carbonaceous; petroliferous odor; 0.01-0.05' thick; medium dark gray intervals, 0.05-0.15' thick; non-calcareous; with rare, argillaceous, limestone beds less than 0.3' thick, occasionally with a rippled texture; fissile; dimpled	······	GROUP	ale	L
_	.71	63		surface; rock quality D-1, S-2, F-2, moderately hard		- FALLS	Hatch Shale	
	94	88	50			WEST	Ĩ	

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

Г

	1 DILLA
1	LPHA

	Recovery	%RQD	oth (DESCRIPTIVE LOG	Graphic	Formation	Member	
Run No.	% Rec	%R	Depth (ft)	ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Log	Form	Mer	REMARKS
3	98	98						
4	96	96	60 —					
5	99	99						
6	100	100		75.2-112.5 Shale, medium gray (N4), brownish black (5 YR 2/1), interlayered; claystone; similar to 34.0-75.2' with more frequent argillaceous limestone beds; carbonate concretion 95.3-95.4'; fissile; rock quality D-1, S-2, F-2, moderately hard		GROUP		vertical fractur
7	78	78					Hatch Shale	82.0-82.9'
8	45	<u>12</u>	90			WEST FALLS	latch	Core is crushe
9	40	28	- - - - - - - - - - - - - - - - - - -			WES	-	and broken 87.9-95.0'
10	100	100						

Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
	95	95	120-	112.5-169.3 Shale; medium gray (N4) with brownish black (5 YR 2/1) intervals; laminated; brownish black intervals are carbonaceous with petroliferous odor, 0.01 to 0.8' thick; non-calcareous; fissile; pyrite granules prevalent in medium gray intervals; carbonized plant debris at 116.2'; septarian nodule at 126.3-126.7'; rock quality D-1, S-2,F-2, moderatly hard				112.5' base of Hatch Shale beneath lowest argillaceous limestone. Pyrite ovoids at contact
2	100							
3	98	98	 140 			FALLS GROUP	Rhinestreet Shale	1
5	98	98	150 — _ 			WEST FAI	Rhines	
6	100	100	160— — — — — _ 170 —					0

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

GEOS	CIENCE					c		
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
-	100	100	180—	169.3-181.0 Shale; brownish black (5 YR 2/1); laminated; interlayered with intervals of gray and brownish black laminae; non-calcareous; petroliferous odor; carbonaceous; high fissility; rock quality D-1, S-2, F-2, moderately hard		WEST FALLS GROUP	Rhinestreet Shale	vertical fracture 173.3-174.4'
8	100 90	100 90		181.0-231.0' Shale; dark gray (N3) to medium dark gray (N4); claystone; laminated; slightly calcareous; abundant pyrite lenses (burrow casts); rare fossils include brachiopods and carbonized plant debris; high fissility and platy fracture; rock quality D-1, S-2, F-2, moderately hard		SONYEA GROUP	Cashaqua Shale	Begin HQ core at 200 feet
0	100	97	210 — 220 —			10s	Ca	
1	00	100	- - 230 -					

1	1	1	1		0		1	1
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
22	100	100	240-	231.0-299.0 Shale; dark gray (N3) to medium dark gray (N4); claystone; laminated; slightly calcareous; similar to 181.0-231.0'; very rare fossils include brachiopods, cephalopods (coiled and straight), plant debris; high fissility; rock quality D-1, S-2, F-2, moderately hard				
23	100	100	250— — — 260 —			GROUP	a Shale	
4	97	97	 270 			SONYEA G	Cashaqua	1
:5	100	96	280-					
6	100	100	290					

L
L
L
L
4
2

GEOS	Z HA JENCE	Ρ	roject _	Akzo Nobel Salt, IncHampton Corners Project No94124 Sheet6_ of34	F	lole N	o. <u>94</u>	55
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
27	100	100	300-	299.0-356.9 Shale; dark gray (N3); same as above; very rare fossils include brachiopods and plant debris; rock quality D-1, S-2, F-2, moderately hard				
28	97	97	310— — — 320—			SONYEA GROUP	Cashaqua Shale	
29	100	100	- - 330- -			SONYEA	Cashaq	
30	100	100	340 - - - 350					

GEOSCIENCE	1		0		1	
Run No. % Recovery %RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
31 100 100	0	356.9-383.0 Shale; dark gray (N3), interbedded with brownish black (5 YR 2/1); dark gray intervals: claystone; 0.05' to 0.5' thick; massive to laminated; with pyritized burrow casts; brownish black intervals: claystone; 0.05' to 0.8' thick; laminated; petroliferous odor; both dark gray and brownish black intervals are non-calcareous; rock quality D-1, S-2, F-2, moderately hard			le Cashaqua `Shale	
32 100 100	370— 0 — 380—			SONYEA GROUP	Pulteney Shale	
3 98 98		383.0-399.3 Shale; brownish black (5 YR 2/1); claystone; laminated; carbonaceous; non-calcareous; petroliferous odor; rare fossils include gastropods and plant debris; rock quality D-1, S-2, F-2, moderately hard		SC	a	Pulteney/ Middlesex conta from Gamma Lo 390'
 34 100 100	400-	399.3-407.0 Shale; dark gray (N3) interbedded and interlaminated with brownish black (5 YR 2/1) laminated; styliolinids concentrated in thin whitish bands in dark gray shale beds; brownish black beds with petroliferous odor; bottom contact is at base of 0.01' thick pyrite and styliolinid lag; fossils include gastropods, plant debris, styliolinids; rock quality D-1, S-2, F-2, moderately hard			Middlesex Shale	grayish black carbonate concretion 396.8-397.2' Middlesex-West
	410				West River	River contact at

Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
35	98	96	420-	407.0-472.3 Shale; similar to 399.3-407.0'; dark gray (N3.5) interbedded and interlaminated with brownish black (5 YR 2/1); claystone; fossils include pelecypods, styliolinids (as calcareous white bands in gray shale), plant debris; pyrite nodules; rock quality D-1, S-2, F-2, moderately hard				
36	98	97	430— 440			GROUP	West River Shale	4.
57	100	100	- - 450 — - -			GENESEE	West Riv	
38	98	98	460					

C	
GEOSCIENCE	

.

Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
			-	472.3-475.7 Limestone; dark gray (N3) to olive black (5 Y 2/1); nodular wackestone and grain- stone; black, carbonaceous material between nodules; fossils include brachiopods and styliolinids; rock quality D-1, S-1, F-2 to F-3, hard			GEN	GEN=Genundew Limestone
39	87	83	480	475.7-512.4 Shale; dark gray (N3) interbedded with brownish black (5 Y 2/1); claystone; laminated to massive; frequent gray carbonate nodules 0.1 to 0.3' thick; calcareous; small pyrite ovoids; rare fossils include styliolinids and pelecypods; rock quality D-1, S-1 to S-2, F-2, moderately hard to hard; fissile				vertical fractur 484.4-486.0
40	100	100	490			ENESEE GROUP	Penn Yan Shale	ς.
41	97	97	510-			GENE		vertical fractur 506.4-508.7'
				512.4-537.8 Shale; same as 475.5-512.4 without carbonate nodules; pyrite nodules; rock quality D-1, S-2, F-2, moderately hard; fissile				
42	100	100	520					

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

17	
A	LPHA
CF CF	OSCIENCE

Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
-							Penn Yan Shale	
43	100	100	540— 	537.8-545.9 Shale; brownish black (5 YR 2/1) interlaminated with black (N1); claystone; carbonaceous; petroliferous odor; non-calcareous with calcareous, thin, white laminae; rock quality D-1, S-2, F-2, moderately hard; fissile; vertically fractured		EE GROUP	Geneseo Shale	vertical fracture 538.4-541.8'
44	100	100		545.9-553.9 Limestone; medium gray (N4); mudstone; argillaceous limestone beds (1.0-1.5' thick interbedded with brownish black (5 YR 2/1), carbonaceous shale with petroliferous odor; rock quality D-1, S-1 to S-2, F-2, hard to moderately hard		GENESEE	Genes	vertical fracture 549-550' "Geneseo
			- 560	553.9-562.6 Shale; olive black (5 Y 2/1) interlaminated with brownish black (5 YR 2/1); claystone; mild petroliferous odor; non-calcareous; fissile; rock quality D-1, S-2, F-2, moderately hard; with vertical fractures				Limestone" 545.9-553.9'
45	100	100	- - 570	 562.6-562.8 Pyrite lag with sharp irregular upper and lower contacts; visible fossils include crinoids and burrow casts 562.8-598.0 Shale; medium dark gray (N4); claystone; very faint laminations; calcareous to non-calcareous; mild petroliferous odor; pyrite nodules (0.01 to 0.03' thick) common in upper 9.0'; thin (0.01 to 0.05' thick) fossil hash layers include crinoids, bryozoans, brachiopods; rock quality D-1, S-2, F-2, moderately hard; horizontal platy fractures 		NO		562.6-562.8 "Leicester Pyrite"
						W FORMATION	Windom Shale	
46	100	98	580			MOSCOW	Win	
			590 -					

11	
11	
	EOSCIENCE

Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
47	100	100	600	598.0-613.1 Shale; medium dark gray (N4); same as above, except fossil hash layers are less common, and ambocella brachiopods are prevalent; slightly calcareous; rock quality D-1, S-2, F-3, moderately hard; horizontal platy fractures		NOIL	Windom Shale	
48	100	100	620	613.1-660.4 Shale; medium dark gray (N4); claystone; massive; non-calcareous; fossils include crinoids, brachiopods (no ambocella brachiopods), pelecypods; pyritized burrow casts; rock quality D-1, S-2, F-2, moderately hard		MOSCOW FORMATION		phosphate granule at base of Windom Shale, from 612.9- 613.1'
49	100	100	- - 630				Shale	
 50	98	98	640-			• • • • • • • • • • • • • • • • • • •	Kashong Shale	
			650					

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

osc	CIENCE	1	,	Akzo Nobel Salt, IncHampton Corners Project No. 94124 Sheet 12 of 34	г П		lo94	100
	% Recovery		Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
-	100	100	660	660.4-695.2 Shale; medium dark gray (N4); claystone; massive; slightly calcareous; occasional to frequent fossil hash beds (packstone/grainstone) with crinoids, bryozoans, brachiopods (from 0.01 to 0.1' thick); rock quality D-1, S-2, F-2; moderately hard			Shale	
	100	100	670_ - - 680			MOSCOW FORMATION	Kashong S	
	100	100	- 690	695.2-696.1 Limestone; medium dark gray (N4) to medium gray (N3); packstone with frequent stylolites; fossiliferous, with crinoids, brachiopods, trilobites, and tabulate coral; rock quality D-1, S-2, F-2; hard; core breaks along stylolites that display slickensided, carbonaceous surfaces				0.9' thick Menteth
	98	98	700-	696.1-700.2 Shale; medium dark gray (N4); claystone; bioturbated and burrowed; fossiliferous, with frequent crinoids, bryozoans, brachiopods, trilobites; rock quality D-1, S-2, F-2, moderately hard 700.2-702.3 Limestone; olive gray (5 Y 5/1) to medium gray (N3); packstone/wackestone, fine crystalline; upper 0.9' is nodular, (boundstone), with abundant tabulate corals; lower 1.2' is massive, calcarenite; other fossils include abundant crinoids and frequent brachiopods and bryozoans; rock quality D-1, S-2, F-2, hard		עררם	Shale HOIL	Limestone at 695.2' TICH=Tichenor Limestone Pyrite bands at 702.2-702.6'
			710	702.3-715.2 Shale; medium dark gray (N4); claystone; fossiliferous; with frequent bryozoans, brachiopods, crinoids, trilobites, pelecypods, and rare corals; fossils often occur in 0.1 to 0.2' thick bands; slightly calcareous; pyrite burrow casts and disseminated pyrite in upper 0.8'; upper contact and lower contact are gradational; rock quality D-1 S-2 E-2 moderately bard		UDLOWVILL	aycox Sł	102.2-102.0

ALPHA
GEOSCIENCE

Project Akzo Nobel Salt, IncHampton Corners	Project No. 94124	Sh
---	-------------------	----

Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
55	100	100		715.2-750.9 Shale; medium dark gray (N4); claystone; bioturbated; slightly to non-calcareous; fossiliferous, with occasional brachiopods, trilobites, bryozoans, crinoids, styliolinids, pelecypods, cephalopods; rare rugose and tabulate corals; primary brachiopods are			Jaycox Shale	
56	100	100	-	ambocoellids, which are commonly replaced/filled with pyrite; cephalopods commonly preserved as compressed mud steinkerns; pyrite common also as platy, horizontal fractures; fossil content decreases across gradational lower contact			Wanakah Shale	
57	100	100						
58	100	100	760-	750.9-820.4 Shale; medium dark gray (N4), brownish black (5 Y 2/1), olive black (5 Y 2/1), claystone; laminated; non-calcareous to slightly calcareous; with occasional pelecypods, brachiopods, bryozoans, styliolinids, crinoids, trilobites and rare rugose coral; occasional pyrite a small nodules, burrow casts, and fossil replacement; rock quality D-1, S-2, F-2, moderately hard; with horizontal fractures		LUDI	Ledyard Shale	

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

Project Akzo Nobel Salt, Inc.-Hampton Corners Project No. 94124

GEOS	CIENCE	<u></u>					0	
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
60	100		780					
61	100	100	800 800 810			LUDLOWVILLE	Ledyard Shale	
62	100	100	- - 820 -	820.4-827.6 Limestone; medium dark gray (N4) to medium gray (N5); nodular wackestone/ packstones interbedded with massive, stylolitic, medium crystalline zones, and rare grainstones and calcarenite; abundantly fossiliferous; fossils include rugose and tabulate corals, brachiopods, crinoids, bryozoans, and trilobites; with rare				
 63	100	96	830	pyrite; gradational upper and lower contacts, marked by decrease in fossil abundance, and by lack of hard, crystalline grainstones; rock quailty D-1, S-1 (medium gray calcarenites) to S-2 (wackestones and packstones), no fractures, hard to moderately hard			Centerfield	high angle (vertical) fracture 828.5-830.5

	O
	ALPHA
1	GEOSCIENCE

Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
	100	100	840- 	827.6-903.2 Shale; olive black (5 Y 3/1) to medium dark gray (N4.5); claystone; laminated; calcareous to slightly calcareous; with frequent styliolinids, occasional small brachiopods and pelecypods; occasional pyrite nodules and burrow casts; occasional high angle (80-90 degrees) fractures; slight to moderate petroliferous odor; rock quality D-1, S-2, F-2, moderately hard		SKANEATELES		high angle (vertica fracture from 834-835' and 836-837.5' vertical fracture 873.0-878.0'
67	100	87						

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

	O'
Į	ALPHA

Project Akzo Nobel Salt, Inc.-Hampton Corners Project No. 94124

Sheet 16 of 34

Hole No. 9455

GEOS	CIENCE							
Run No.	% Recovery		Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
 69 	100	99	900-	903.2-993.3 Shale; medium dark gray (N4), rarely brownish black (5 YR 2/1); claystone; laminated slightly calcareous; occasional brachiopods and nautiloid cephalopods (coiled and				argillaceous limestone 903.2-904.8'
70	100	100	_ 	straight); with petroliferous odor; pyrite occasional as cephalopod replacement, and as burrow casts; frequent styliolinids; interlayered with bioturbated, medium gray (N5), argillaceous limestones averaging 1 to 3 feet thick, occasional crinoids, brachiopods, pelecypods, and stylolites; contacts between shales and limestones are gradational; rock quality D-1, S-2, F-2, moderately hard		TELES	าทล	argillaceous limestone 914.4-919.8'
		100	920 930			SKANEATELES	Levanna	argillaceous limestone 927.4-928.1'
73	100	100	940-					argillaceous limestone 937.4-940.6'
74	100	100	950 -					argillaceous limestone 945.7-948.7'

C	
GEOSCIENCE	

GEOS	CIENCE	F	Project _	Akzo Nobel Salt, IncHampton Corners Project No. 94124 Sheet 17 of 34	Hole No9455				
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS	
75	100	100	960-					bioturbates, argillaceous limestones at 955-955.7', 958.7-960.3', and 967.7-968.6'	
76	100	100	- 970— -			S			
77	100	100	980			SKANEATELES	Levanna		
78	100	100	- 990 — - -	993.3-1051.3 Shale; same as above with rare argillaceous limestone beds; interlaminated and interlayered with brownish black (5 YR 2/1), carbonaceous shale with petroliferous				limestone 991.3-993.3	
79	100	100	- - 1000- - -	odor; lower contact is gradational					
80	100	100	1010			•			

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

AL		F	Project _	Akzo Nobel Salt, IncHampton Corners Project No. 94124 Sheet 18 of 34	F	lole N	094	155
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
 82 83 83 84 85 	100	100 100 		1051.3-1070.0 Shale; same as above; with brownish black (5 YR 2/1) intervals becoming more common		SKANEATELES	Levanna	Brownish black petroliferous shale from 1051.3-1052.0' and 1055.0- 1055.6'

b	e١	No	. 1	94	55	ĺ

Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
37		92		1070.0-1080.7 Shale; brownish black (5 YR 2/1) to olive black (5 Y 3/1); claystone; laminated; carbonaceous; strong petroliferous odor; abundant styliolinids, and occasional small brachiopods and pelecypods; occasional, small pyrite nodules and granules; rock quality D-1, S-2, F-2, moderately hard; occasional vertical fractures		SKANEATELES	Levanna	vertical fracture 1073.3-1078.0'
		_		1080.7-1082.5 Limestone; brownish black (5 YR 3/1); wackestone/packstone; massive; stylolitic; bioturbated; abundant brachiopods, pelecypods, occasional styliolinids; rare pyrite granules; sharp upper contact and gradational lower			STAF	STAF=Stafford Limestone 1083.1-1083.4' fossiliferous
		52	- 1090 - - - - 1100	contact; rock quailty D-1, S-2, F-2, hard 1082.5-1111.6 Shale; black (N1); claystone; massive to faintly laminated; carbonaceous; non- calcareous to 1106.2'; slightly calcareous below 1106.2'; pyrite abundant as blebs, granules, and ovoid nodules; rare, fossiliferous carbonate concretions; rare styliolinids, brachiopods, and occasional carbonized plant debris; styliolinids extremely abundant below 1106.2'; strong petroliferous odor throughout; rock quality D-1, S-2, F-3, moderately hard; frequent vertical fractures, commonly along 2 vertical fracture planes that intersect at 60 and 120 degrees		SUBGROUP		carbonate concretion
39	97	73		1111.6-1113.4 Limestone; brownish black (5 YR 3/1); packstone; massive; bioturbated and burrowed; abundant styliolinids, brachiopods, pelecypods; pyrite common as burrow replacement and brachiopod replacement; lower 0.7' is laminated styliolinid grainstone/packstone; rock quality D-1, S-1 to S-2, F-2, hard to moderately hard		CREEK		
90	99	99	1110— - -	1113.4-1119.0 Shale; brownish black (5 YR 2/1); claystone; laminated; slightly calcareous; carbonaceous; extremely abundant styliolinids; styliolinid pack/ grainstone from 1114.2-1117.2'; petroliferous odor; rock quality D-1, S-2, F-2, moderately hard		DATKA	CV	CV=Cherry Valley Limestone
 91 ·	100	100	- - 1120—	1119.0-1136.3 Limestone; olive gray (5 Y 3/1) to medium dark gray (N4); fine to medium crystalline; commonly packstone, with abundant brachiopods, crinoids, bryozoans, styliolinids, and rugose corals; frequent (15%) brownish black (5 YR 2/1) chert nodules; rare white calcite crystals partially filling brachiopod vugs; upper contact irregular and marked by 0.01' thick pyrite lag; upper 0.8' (1119-1119.8') marked by concentrated shell hash with very small fish bones, teeth, and abundant coarse, dark and	<u>~~</u>	GA USF	Bakoven	USF=Union Springs Formation high angle,
92	100	— 100		shell hash with very small shores, teeth, and abundant contact, dark dark commonly angular granules; 1119.8-1121.4' consists of black (N1), carbonaceous, slightly calcareous shale, extremely abundant styliolinids (frequently concentrated as white styliolinid laminae); 1121.4 to 1121.6' consists of grayish black (N2), carbonaceous shale with extremely abundant fish bones (spine columnals); unit contains frequent stylolites below 1121.6'; lower contact beneath 0.4' thick metabentonite layer; rock quality D-1, S-1, F-2, hard; with fractures occasionally along slickensided chert/		ONONDAGA	Seneca	slickensided fractures, lined with calcite and granular coalified material

α

Project __Akzo Nobel Salt, Inc.-Hampton Corners Project No. ___94124____

Sheet 20 of 34

Hole No. 9455

GEOS	CIENCE							100
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
							Seneca	1135.9-1136.3'
	100 98	100 98	1140— — — —	1136.3-1183.0 Limestone; brownish black (5 YR 3/1), medium gray (N5), and light brownish gray (5 YR 6/1); fine to medium crystalline, occasionally packstone; massive; fossiliferous, frequent brachiopods, bryozoans, crinoids abundant (25%) chert nodules, ranging in color from pale brown (5 YR 5/2), brownish gray (5 YR 4/1), to dark gray (N3); frequent stylolites, and carbonaceous, wispy, anastomozing laminae; mild, rarely strong, petroliferous odor; pyrite rare; upper contact at base of bentonite layer; lower contact gradational with color change from medium gray to brownish black; rock quality D-1, S-1 to S-2, F-2, moderately hard to hard;				OIN Ash Bed "Tioga B Bentonite"
95	100	100	11 <u>50</u> - - - 1160	irregular fractures and core breaks associated with chert/limestone contacts.		ONONDAGA	use	
			- - - 1170				Moorehouse	
96	100	99	1180-	1183.0-1197.0 Limestone; brownish black (5 YR 2/1) to dark gray (N3); fine crystalline, to mudstone; massive; bioturbated and burrowed; stylolitic, with rare, small brachiopods, rare (5%) dark gray chert, and occasional pyrite as small rounded				[
97	98	98	1190	nodules (in cross section); lower 1.6' is interlaminated, intensely burrowed, grayish olive green (5 GY 3/2; wet) and dark gray (N3); mudstone; small, bright, dusky blue green (5 BG 3/2) crystals and very fine laminae occur within lower 1.6'; lower contact is sharp and irregular with underlying brachiopod and crinoid rich packstone; rock quality D-1, S-2, F-2, hard			Nedrow	distinct, burrowed interval from 1187-1187.4'

C	
GEOSCIENCE	

GEOSCI					1		f	
Kun No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
			-				Nedrow	
18 1	100	100		1197.0-1240.1 Limestone; medium dark gray (N4), medium light gray (N6), brownish gray (5 YR 3/1) and olive gray (5 YR 4/1); fine crystallline, to packstone; massive, with abundant, anastomozing wisps of dark, organic material; stylolitic; extremely abundant (25-75%) chert nodules, characterized by very thin calcite-healed fractures that extend inward from nodule edges; chert nodule color ranges from brownish black (5 YR 2/1) to dark gray (N3); fossiliferous, with frequent crinoids, brachiopods, trilobites, rugose and tabulate corals; pyrite rare overall, except beneath upper contact; rock quality D-1, S-1, F-2, hard; fractures and core breaks generally occur along chert/limestone contacts, and along dark, carbonaceous, wispy laminae		AGA		
99 -	100	97	- - 1220 - -			ONONDAGA	r Clarence Facies	
00	100	100	1230 	1240.1-1246.0 Limestone; medium gray (N5); medium crystalline, to packstone; stylolitic; abundant crinoids, brachiopods; rare (5%) chert nodules; lower 0.9' is conglomeratic, with fragments of dark gray (N3) dolomite, ranging in size from granules to rip-up clasts up to 0.15 feet thick; lower contact is sharp and irregular, beneath 0.1' thick brownish black dolomite with rare yellow sulfur crystals; D-1, S-1 to S-2, F-2, moderately hard to hard 1246.0-1248.0 Dolomite; dark yellowish brown (10 YR 3/2) to brownish gray (5 YR 4/1); fine			Edgecliff Member	
01 -	100		1240 	 1246.0-1248.0 Dolomite; dark yellowish brown (10 YR 3/2) to brownish gray (5 YR 4/1); fine crystalline; laminated; strong petroliferous odor; rock quality D-1, S-2, no fractures; upper contact has 0.01' thick concentration of rounded sand-sized grains 1248.0-1252.7 Siltstone to Sandstone: light olive gray (5 Y 6/1); massive; mottled appearance due to dark gray, irregular wisps (root bioturbation); occasional lenses of sand and pebble-sized grains; 0.3' thick laminated interval at 1250.2'; light brownish gray (5 YR 6/1) mud rip-up/clay pebble conglomerate interval from 1251.1 to 1251.5'; occasional stylolites; no petroliferous odor; sharp, irregular upper and lower contacts; rock quality D-1, S-2, no fractures; moderately hard 		BG M M		BG=Bertie Groyp A=Akron Dolostor W=Williamsville Formation

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

GEOSCI	ENCE							
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
_	00		1260— 	 1252.7-1256.5 Dolomite; light olive gray (5 Y 6/1), olive black (5 Y 2/1), and brownish gray (5 YR 4/1); fine crystalline to siltstone; interlaminated; commonly contorted and deformed by soft-sediment deformation and slumping; frequent conglomeratic intervals of rip-up clasts and pebbles; occasional laminae of black, carbonaceous material up to 0.03' thick, which are glossy and display slickensides; rock quality D-1, S-2, F-2, hard 1256.5-1284.2 Dolomite; dusky yellowish brown (10 YR 2/2); grayish brown (5 YR 3/2) to brownish gray (5 YR 4/1); fine crystalline; massive to laminated; bioturbated; frequent stringers and laminae of brownish black (5 YR 2/1), carbonaceous material, which often displays dessication features and slickensides; occasional stylolites; vuggy from 1258.5-1268.8', and from 1270.6-1278.1'; 1268.8-1270.6' is massive, non-vuggy, dusky yellowish brown dolomite with frequent carbonaceous mud laminae up to 0.03' thick; unit contains occasional chert nodules, gypsum (selenite), and yellowish sulfur-like crystals; strong petroliferous odor; bioturbated intervals become more frequent in lower half of unit; rock quality D-1, S-2, F-2, hard; fractures and core breaks commonly occur along carbonaceous laminae 		GROUP	Unit H	1262.5-pinkish gray and white chert nodules 0.15- ft. diameter round, tabulate- like coral at 1269'
	00 1		1280 — - - - - - - - - - - - - - - - - - - -	 1284.2-1295.5 Dolomitic Shale; medium dark gray (N4), interlaminated with olive gray (5 Y 4/1); fine crystalline; occasional wispy, olive black (5 Y 2/1), carbonaceous laminae, which display dessication features, and are occasionally capped with a marcasite-like film, occasional, irregular lenses, layers and nodules comprised of fine granules of chert, anhydrite, and gypsum; occasional small crystals and nodules of a yellowish sulfur-like mineral; rare to occasional stylolites; upper and lower contacts are both gradational; rock quality D-1, S-2, F-2, moderately hard 1295.5-1301.3 Dolomite; olive black (5 Y 2/1) interlaminated and interlayered with brownish black (5 YR 2/1) and brownish gray (5 YR 4/1); abundant gypsum as nodules and small prismatic crystals; abundant anhydrite, as nodules, blebs, and thin beds, below 1296.7'; laminations commonly deformed and contorted by anhydrite and gypsum formation; rock quality D-1, S-2, F-2, hard 1301.3-1323.8 Shaly Dolomite; dark yellowish brown (10 YR 5/2) to brownish gray (5 YR 4/1); fine crystalline; laminated; laminae and thin beds often separated by brownish black (5 YR 2/1), carbonaceous laminae with mudcracks and desiccation features; occasional stylolites, and fluid migration structures; occasional olive black (5 Y 2/1), laminated shale beds up to 0.8' thick; occasional strong petroliferous odor; overall rock quality D-1, S-1 to S-2, F-2 to F-3, moderately hard; shaly dolomite occasionally fissile, core breaks common along carbonaceous laminae 		BERTIE	'n	anhydrite bed

GEOSCIE	HA	P	roject _	Akzo Nobel Salt, IncHampton Corners Project No. 94124 Sheet 23 of 34	ŀ	lole N	lo. 94	155
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
			- - - - 1320—			BERTIE GROUP	Unit H	
1061	100	100	- - 1330—	1323.8-1417.2 Shale; olive black (5 Y 2/1), greenish black (5 G 2/1), olive gray (5 Y 4/1), and grayish black (N2); claystone, occasionally fine crystalline; massive, to faintly laminated; laminations greatly disrupted by anhydrite formation and fluid migration; frequent irregular laminae of carbonaceous, olive black, slickensided material;				
07	100	100	- - 1340 - -	anhydrite common throughout as rounded nodules, stringers, blebs; anhydrite is light bluish gray to bluish white on core surface, and grayish black on fresh surface; anhydrite abundant in upper 6.0' of unit, comprising up to approximately 75% of matrix; occasional gypsum, as fracture fill and small blebs; occasional intervals of dolomite averaging 2.0' thick; dolomite intervals are brownish gray (5 YR 4/1), pale brown (5 YR 5/2), and dusky yellowish brown (10 YR 2/2); fine crystalline; laminated; occasional stylolites; and occasional gypsum-healed fractures; dolomite commonly interlaminated with anhydrite; overall rock quality D-1, S-1 to S-2, F-2, moderately hard to hard		CAMILLUS	Unit G	1337.2-1339.4' dolomite (possibly stromatolite)
08	100	100	- 1350— - -			CA		
			- 1360— -					
109	100	96	- 1370 ⁻					

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

Project __Akzo Nobel Salt, Inc.-Hampton Corners Project No. ___94124

Hole No. 9455

GEOSCIENCE			ole No). <u> 9</u> 2	+55
Run No. % Recovery %RQD	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
			CAMILLUS		dolomite 1395.4-1397.4' dolomite 1400.4-1404.2'
13 100 85	 1417.2-1428.9 Dolomite; brownish gray (5 YR 4/1) and dusky yellowish brown (5 YR 2/2); fine crystalline; thin bedded to laminated; frequent brownish black (5 YR 2/1), carbonaceous laminae, displaying mudcracks and desiccation features, as well as glossy, black (N1) carbonized and slickensided surfaces (revealed by core breaks); occasional stylolites and gypsum-healed fractures; anhydrite frequent as laminae; occasional speckled appearance due to small, brownish, randomly oriented gypsum crystals; petroliferous odor; core breaks common along thin beds separated by carbonaceous laminae; rock quality D-1, S-1 to S-2, F-2 to 		SYRACUSE	Unit F	

Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
14	100	95		 1428.9-1489.2 Shale, interbedded with dolomite: Shale = olive gray (5 YR 3/2), olive black (5 Y 2/1) and medium dark gray (N3.5); claystone; fine crystalline; laminated; laminae often completely disrupted by fluid migration, slumping and anhydrite formation; abundant anhydrite as stringers, blebs, granules and nodules; frequent angular fractures (50-80 degrees from horizontal) healed with gypsum; occasional carbonaceous, slickensided surfaces exposed at fractures and core breaks: Dolomite =brownish gray (5 YR 3/1) and dusky yellowish brown (10 YR 2/2); fine crystalline; occasionally shaly; massive to thin bedded; occasionally interlaminated and interlayered with anhydrite; laminations and bedding often very contorted; frequent brownish black, carbonaceous laminae; frequent desiccation features; occasionally with carbonized, black, slickensided surfaces; occasional speckled appearance in some massive intervals due to small, 				dolomite 1437.1-1439.6'
15	100	96		prismatic, randomly oriented, brownish gypsum crystals; frequent gypsum- healed angular fractures (30-90 degree fracture angle); rare brecciated intervals of dolomite fragments within gypsum matrix; occasional stylolites; petroliferous odor; core breaks common along carbonaceous partings; overall rock quality D-1, S-1 to S-2, F-2 to F-3, moderately hard to hard		SYRACUSE	Unit F	Shale 1455.2-1457.5'
16	100	97	1470 					[
17	100	100	1480 - - - 1490				Linit F	

Project Akzo Nobel Salt, Inc.-Hampton Corners Project No. 94124 Sheet 26 of 34 Hole No. 9455

GEOSC	IENCE	1	1			IOIE IN		100
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
118	100	98		1489.2-1506.8 Shale; olive black (5 Y 3/1) and dark greenish gray (5 GY 4/1); claystone; laminated, with laminations commonly contorted by anhydrite formation and fluid migration; anhydrite abundant as stringers, nodules and laminae; rare gypsum-healed fractures, fracture angle 30 to 45 degrees; rare olive black, glossy, slickensided surfaces exposed on core break surfaces; rock quality D-1, S-2, F-2, moderately hard				
119	100	97		1506.8-1572.2 Dolomite; dark yellowish brown (10 YR 4/2), dusky yellowish brown (10 YR 2/2), and brownish gray (5 YR 4/1); fine crystalline; massive to laminated; occasional contorted laminations and bedding; stylolites common; frequent soft-sediment deformation and small-scale slumping; gypsum (selenite) as lenses, laminae, nodules and as fracture fill; occasional thin bedded intervals, with brownish black, carbonaceous laminae (frequently with black, carbonized, slickensided surfaces); desiccation features separating individual beds; petroliferous odor; and thin (<2.0') intervals of shale as in 1489.2 to 1506.8'; thin bedded dolomite intervals are often fissile, breaking easily along carbonaceous partings; rock quality D-1, S-1 to S-2, F-2 to F-3, moderately hard to hard;		SYRACUSE	Unit E	Shale 1508.5-1509.7
20	100	95						Shale 1530.8-1533.2
			 1540 					L Shale 1537.7-1539.4'
21	100	96	1550					

1	O/
3	GEOSCIENCE

AL	PHA	Ρ	roject	Akzo Nobel Salt, IncHampton Corners Project No94124 Sheet27 of34	н	ole N	o. <u>94</u>	.55
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
122	100	100	- - - - - - - - - - - - - - - - - - -	1572.2-1576.5 Dolomite; dark yellowish brown (10 YR 4/2) to dusky yellowish brown (10 YR 2/2);			Unit E	1573.2' Contact
123	100		- - 1580 - - - - - -	 1572.2-1576.5 Dolohite, dark yelowish brown (10 Ht 4/2) to dusky yelowish brown (10 Ht 2/2), fine crystalline; laminated to thin bedded; dessication features on partings between beds; anhydrite bed comprising upper 1.0'; salt dissolution vugs from 1573.2-1575.1' 1576.5-1592.4 Shale; medium dark gray (N4), dark gray (N3), olive black (5 Y 2/1), and rarely dark greenish gray (5 G 4/1); claystone; laminated, with laminations frequently contorted, disrupted and obliterated by fluid migration, anhydrite formation, small-scale slumping, and syneresis structures; anhydrite frequent as stringers, nodules, and pebbles; lower 3 feet is brecciated with fragmented shale and halite, and conglomeratic intervals of mud rip-ups and claystone pebbles; rare halite (frequent in lower 2.0') as fracture-fill and syneresis structures; overall rock quality D-1, S-2, F-2, moderately hard 		SYRACUSE		between Units D & E
124	100	100	1590 	1592.4-1617.1 Halite; white; transparent; occasionally gray and translucent; coarse to very coarse crystalline; rare to occasional shale fragments and lenses throughout; upper and lower contacts are both sharp; 2.0 feet of shale above upper contact is contorted and brecciated with frequent halite; solid core lengths from 0.2 to 1.6 feet			1	1592.4' D-2 Salt
125	97	97	1610					

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

GEOSCIENCE					0	100
Run No. % Recovery %RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
						D-2 Salt 1617.1'
26 97 97	1620-	1617.1-1619.4 Dolomite; dark yellowish brown (10 YR 4/2) to dusky yellowish brown (10 YR 2/2) fine crystalline, possibly gypsiferous matrix; laminated; occasional possible cross- bedding; rare stylolites; frequent halite laminae and blebs, and anhydrite nodules, which commonly deform laminations; powdery, dark yellowish brown surface rind possibly created during coring ("core weathering"); rock quality D-1 to D-2		SYRACUSE	Unit D	1625.1'
27 100 100		("core-weathering"), S-2, F-2, moderately hard 1619.4-1625.1 Shale; same as interval from 1576.5-1592.4'; occasional halite as lenses, fracture-fill, and syneresis structures 1625.1-1641.6 Halite; white, rarely gray, and translucent; very coarse crystalline; occasional to frequent shale and anhydrite fragments and lenses in "chicken wire" structure throughout unit; sharp upper contact; lower contact is extremely brecciated, halite transparent, anhydrite and brownish shale in a contorted mix within the lower 1.5 feet; solid core lengths from 0.2 to 1.6 feet		SΥ		D-1 Salt
28 100 100	1650	1641.6-1685.8 Shale, light olive gray (10 Y 5/4), grayish olive (10 Y 4/2), light olive brown (5 Y 5/6), dark greenish gray (5 G 5/1); interlaminated and interlayered; occasionally mottled with grayish red (10 R 4/2) to dark reddish brown (10 R 3/4); claystone; repeating, partial to complete bedding sequences in the following general pattern (from bottom to top of pattern): thin (<2.0') conglomeratic intervals of anhydrite clasts and claystone pebbles, interlaminated with anhydrite laminae and stringers; overlain by thicker zones of massive, to laminated, olive and red mottled claystone, abundant fluid escape structures, and reddish brown halite streaks, fracture fill, and syneresis structures; capped by massive, non-mottled olive claystone, occasional rounded anhydrite nodules, and rare halite; abundant small (<0.01') grayish black, micaceous, tabular, striated, metallic minerals (hematite) often associated with reddish brown halite versity overall rock quality D 1.8 2 to 5.2 to 5		VERNON	Unit C	1641.6' sandstone 1647.8-1648.4 hematite crystals
29 100 100 30 100 100	-	D-1, S-2 to S-3, F-2, soft; occasional slickensided surfaces at shale/halite contacts				

GEOSC	IENCE						10	
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
131	100	100		1685.8-1688.9 Shaly Dolomite; dark yellowish brown (10 YR 4/2) to dusky yellowish brown (10 YR 2/2); claystone; laminated; occasional laminae of anhydrite and halite; rock quality D-1, S-2, F-2, moderately hard				sandstone 1681.0-1681.5'
132	100			1688.9-1763.5 Shale; claystone; same as shale interval from 1641.0-1685.8, but with absence of reddish brown mottling between 1641 to 1733.5'; rock core is highly altered, weakened and soft from 1710 to 1710.5'		VERNON	Unit C	
33	100	94	- - 1710					vertical fracture
34	100	87	- - 1720					1710.5-1712.1
135	79		1730					

L
L
Ν.

GEO			Project _	Akzo Nobel Salt, IncHampton Corners Project No. 94124 Sheet 30 of 34	ł	Hole N	1094	.55
Run No.	% Recoverv	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
	100		1740 — 	1763.5-1774.3 Dolomite; dusky yellowish brown (10 YR 2/2), dark yellowish brown (10 YR 4/2), and brownish black (5 YR 2/1); claystone, interlayered and interlaminated with fine crystalline; occasional contorted laminations; anhydrite frequent as laminae, and as occasional small nodules; occasional halite in syneresis structures, as fracture fill and occasionally as lenses and laminae; core surface has brownish		VERNON	Unit C	
138 		100	- - - 1780- - - - 1790	 "core-weathered" surface rind; rock quality D-2 ("core-weathering"), S-2, F-2, moderately hard 1774.3-1812.9 Shale; interlayered and interlaminated grayish olive (10 Y 4/2), dark greenish gray (5 G 5/1), olive gray (5 Y 3/1), medium dark gray (N4), and olive black (5 Y 2/1); claystone, with repeating sequences of olive black claystone, olive gray, flattened claystone pebbles and anhydrite clasts; overlain by laminated greenish gray, olive gray, and medium dark gray claystone, characterized by fluid escape structures, small scale slumping, laminae off-set, and syneresis structures of halite; capped by massive grayish olive claystone with occasional halite-filled fractures and syneresis structures; anhydrite common throughout unit as laminae, blebs, pebbles, nodules; reddish orange halite bed from 1806.1 to 1806.8'; overall rock quality D-1, S-3, F-2, soft 				

55

Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
	100						Unit C	Halite: reddish orange 1806.1 to 1806.8'
141	100	100		1812.9-1839.9 Halite; gray and translucent; coarse crystalline; frequent shale clasts and fragments in upper 1.5'; extremely rare shale fragments below 1814.4'; brecciated upper contact and sharp lower contact; unit is underlain by 4.2' of brecciated and contorted shale and halite; solid lengths of 0.2 to 2.0'		VERNON	Unit B	1812.9' B-6 Salt
142	100	100	- - - 1840	1839.9-1846.7 Dolomite; light olive gray (5 Y 5/1), brownish gray (5 YR 4/1), dusky brown (5 YR 2/2); fine crystalline, massive to laminated; extremely contorted and brecciated			N	1839.9'
143	100	100	- - 1850	(5 YR 2/2); fine crystalline, massive to faminated, extremely contorted and preclated in upper 4.2', with abundant halite as laminae, lenses, fracture-fill and syneresis structures; brownish, powdery, "core-weathered" surface rind; sharp lower contact beneath 0.2' thick clear, translucent halite beds; rock quality D-1 to D-2 ("core-weathering"), S-2, F-2, moderately hard				0.2' thick, trans- parent halite beds at 1844.4 & 1846

Project Akzo Nobel Salt, Inc.-Hampton Corners Project No. 94124

Hole No. 9455

							A 1922-010	
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
 140	100	100	1860-	 1846.7-1857.3 Shale; dark greenish gray (5 G 5/1) to olive gray (5 Y 4/1); claystone; massive to laminated; abundant anhydrite nodules, blebs, and pebbles; reddish brown to reddish orange halite as fracture-fill, lenses, and syneresis structures; large vertical fracture filled with halite in upper 2.0' (halite comprises ~90% of core volume); D-1, S-2, F-2, soft 1857.3-1866.2 Dolomite; olive black (5 Y 3/1), brownish gray (5 YR 4/1), and light brownish gray (5 YR 6/1); laminated to thin bedded; occasional thin beds of anhydrite pebbles; abundant syneresis structures of reddish brown to transparent halite; occasional anhydrite nodules and fluid escape structures; D-1, S-2, F-2, moderately hard 				
145	100			 1866.2-1877.6 Shale; same as interval 1846.7 to 1857.3 feet 1877.6-1885.3 Halite; white and translucent to gray and translucent; very coarse crystalline; occasional to frequent shale fragments and blebs throughout; sharp, irregular upper and lower contacts; solid core lengths of 0.2 to 1.1 feet 		VERNON	Unit B	1877.6' B-5 Salt 1885.3'
46	100	100		 1885.3-1890.7 Shale; same as interval 1846.7 to 1857.3' 1890.7-1895.0 Halite; dark gray and translucent; coarse to very coarse crystalline; frequent shale blebs and fragments throughout; sharp, irregular upper and lower contacts; solid core lengths from 0.3 to 1.1 feet 1895.0-1897.6 Shale; grayish olive (10 Y 4/2) and olive black (5 Y 2/1); claystone; laminated; occasional halite syneresis structures and fracture-fill; anhydrite common as lenses, nodules and very small clasts; contorted laminations, often off-set by fluid escape structures; rock quality D-1, S-2, F-2, moderately hard 				1897.6'
47	100	100	1910	1897.6-1909.0 Halite; dark gray and translucent, with occasional thin (<1.0') bands of white and translucent; coarse to very coarse crystalline; occasional to frequent shale blebs, fragments and lenses throughout; sharp, irregular upper and lower contacts; solid core length from 0.1 to 1.4'				B-4 Salt 1909.0'

α	
GEOSCIENCE	

Project Akzo Nobel Salt, Inc.-Hampton Corners Project No. 94124

Sheet 33 of 34

Hole No. 9455

Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
			-	_1909.0-1911.0 Shale; same as interval from 1895.0-1897.6'	833333			1911.0'
-				1911.0-1922.7 Halite; dark gray and translucent, occasionally white and translucent; coarse to very coarse crystalline; shale fragments and blebs abundant in upper 5.0', rare below 1916.0'; halite surfaces in upper 5.0' of core have a frosted appearance; brecciated upper and lower contacts; solid lengths of 0.2 to 1.7 feet				B-3 Salt
			1920—					1922.7'
48	100	100		1922.7-1924.3 Shale; same as interval from 1985 to 1897.6'; with abundant halite as fracture fill, and as laminae; extremely brecciated and contorted	88888			1924.3'
49	100			1924.3-1941.0 Halite; dark gray and translucent; coarse to very coarse crystalline; shale abundant as fragments, thin beds less than 0.1' thick, and blebs in upper 5.0'; rare from 1929.3 to 1938.5', and abundant in lower 2.5'; halite in upper 5.0' has frosted appearance on surface; brecciated upper contact and sharp, irregular lower contact; solid lengths from 0.1 to 1.5 feet		VERNON	Unit B	B-2 Salt 1941.0'
			- - - 1950-	1941.0-1944.1 Shale; brownish black (5 YR 3/1) interlaminated with olive black (5 Y 3/1); claystone; frequent fluid escape structures; reddish brown to reddish orange halite frequent as syneresis structures; lower contact with halite is brecciated and irregular; rock quality is D-1, S-2, F-2, moderately hard 1944.1-1953.4 Halite; dark gray and translucent; coarse to very coarse crystalline; occasional shale blebs throughout unit; brecciated upper contact, sharp lower contact;				1944.1' B-1 Salt
			-	solid lengths from 0.1 to 1.1 feet				1953.4'
-		100	- - 1960- - - -	1953.4-1976.3 Shale; olive black (5 Y 2/1), brownish black (5 Y 2/1), light olive gray (5 Y 6/1), olive gray (5 Y 4/1), brownish gray (5 Y R 4/1), grayish olive green (5 GY 3/2); claystone; laminated, to massive and thin bedded; laminated zones have frequent fluid escape structures, and are frequently contorted and off-set; occasional syneresis structures and fractures filled with reddish brown halite; occasional conglomeratic intervals with flattened anhydrite and claystone pebbles; occasional intervals are massive due to extensive fluid migration; anhydrite frequent throughout as nodules, laminae, lenses, blebs; overall rock quality D-1, S-2, F-2, moderately hard			Unit A	

	X	
-		

Project Akzo Nobel Salt, Inc.-Hampton Comers Project No. 94124

Sheet 34 of 34

Hole No. 9455

GEOS	CIENCE					iole IN	1094	
Run No.	% Recovery	%RQD	Depth (ft)	DESCRIPTIVE LOG ROCK TYPE: color; grain size; texture; bedding; minerals; remarks	Graphic Log	Formation	Member	REMARKS
						VERNON	Unit A	
				Total Depth = 1976.3 feet				

APPENDIX B

WELL IDENTIFICATION AND SUBSURFACE DATA

all a

ole, or ther	Veil	e Elevation (ft amsl)	op amsl)			· · · ·	-1	-	1	G	roup,	Form	ation,	and M	lembe	r Top	Eleva	tions (ft ams)						(Isu		ocation
API Well, Hole, o Shaft Number	Alternate Well Identification	Surface Eleva amsl)	Bedrock To Elevation (ft a	West Falls	Sonyea	Genesee	Genundewa LS	(btm Genundewa)	Moscow	Tichenor LS	Ludiowville	Centerfield LS	Skaneateles Levanna	Stafford LS	Marcellus	Onondaga	Tioga Bentonite	Bertie	Camillus Unit G	Syracuse Unit F	Syracuse Unit E	Syracuse Unit D	Vernon Unit C	Vernon Unit B	Vernon Unit A	Well Bottom Elevation (ft amsl)	Northing (ft)	Easting (ft)
01272	Retsof Fuller Shaft	737.1								695.0	687.0						1		1		1				-			+
01273	Griegsville Shaft									090.0	007.0	300.0	562.0	324.0	322.0	287.0	-	143.0	71.0	-				-318.9		-418.0	1029999	686929
01845	Sterling B Shaft	614						1		1		1	-														1034255	682283
	Sterling C Shaft	014	-									-	1			139.0		+	+							-510.0	1016214	691718
02206	Livonia Shaft	660.0 1082	495.4			-						436.4	430.4	194.9	190.9	157.9	141.4	19.9	-55.6	-147.6	-217.6	-294.1	-317.6	-464.6	-590.6	-1265.0	1017060	691718 685031
03282	Retsof #1 Shaft	710+/-					+						-			216.0	194.3	76.0					-344.0			1200.0	1022071	742806
03284	Retsof #2 Shaft	110.11						-	1		-				333.0	277.0		165.0								-431.0	1033755	687537
03305		1613.0														-192.0		-287.0	-396.0	-494.0	-561.5	-694.0	-748.5	-942.0	-1073.0	-1795.3	1034326 984909	687866 745912
04053		1371 881	1347			-					-	-		81.0	77.0	37.5	20.0	-77.0	-179.0	-277.0	-348.5	-431.0	-495.0	-675.0	-869.0	-1640.0	1008745	748132
04089		951	1			838.0	789.0	786.0	721.0	604.0	597.0	720.7	712.7	484.7	479.7	449.7	436.7	318.7		162.7	97.7	29.7	7.2	-111.3		-3661.3	1046928	674568
04117		976.1				811.1	764.1	758.1	697.1	580.1	575.1	478.0 458.1	473.0 450.1	243.0	238.0	205.5	186.0	67.0	5.5	-85.0	-152.0	-226.0	-247.0	-376.0	-491.0	-1156.0	1021867	671131
04129		916						1.00.0	747.0	627.0	621.0	505.0	499.0	269.0	264.0	232.0	169.1 217.0	46.1 88.0	-19.9 27.0	-105.9	-117.9	-244.9	-270.9	-292.9	-494.9	-1118.9	1020653	669060
04138		972.0						1	732.0	613.0	607.0	495.0	486.0	257.0	250.0	221.0	205.0	79.0	18.0	-74.0	-129.0	-203.0	-233.0	-357.0	-470.0	-1103.0	1023416	673942
04149		563	468	-											200.0		none	416.0		-/4.0	-139.0	-222.0	-233.0	-367.0	-470.0	-1106.0	1024060 1055487	669480
04151 04167		957.0						-	759.0	641.0	634.0	519.0	511.0	284.0	279.0	247.0	233.0	106.0	41.0	-49.0	-115.0	-191.0	-211.0	-341.0	-357.0	-1116.5	1025628	712069 672025
04167		960.0	1139		-	-	-			797.4				none	304.4	257.4		112.4	47.4							-1105.6	1026396	674721
04213		562.8	397.8		-	-	1		620.0	497.0	488.0	369.0	361.0	108.0	106.0	65.5	49.0	-62.0	-144.0	-217.0	-290.0	-392.0	-458.0	-632.0	-766.0	-1479.0	1009028	722393
04218		893	587.0			1	1					770.5	700 5	507.5		310.8		183.8	114.3	23.8	-46.2	-122.2	-147.2	-295.2	-421.2	-1111.2	1034498	706357
04363	£	618	306	1		1			-	-		110.5	763.5	537.5	533.5	503.5 306.0	485.5	368.5	302.5	213.5	148.5	77.5	55.5	-59.5	-172.5	-829.5	1051862	673919
04391		1014.0				905.3	860.3	857.3	795.3	675.3	675.3	552.3	545.3	315.3	309.3	253.3	none 261.3	289.0 135.3	72.3	-42.7	-84.7	-155.7	-178.7	0017		-983.0	1043644	706048
04495		1092				901.0	853.0	850.0	791.0	674.0	667.0	553.0	545.0	316.0	313.0	284.0	266.0	138.0	75.0	-14.0	-80.0	-153.0	-178.7	-301.7 -303.0	-402.7	-1062.7	1030889	673761
04531		1106			-	-								340.3	334.8	304.3	288.3	161.3	96.3	7.3	-49.7	-129.7	-154.7	-280.7	-376.7	-1043.0	1030581 1032431	669662 669868
04552		988.5 601.0			-		-		813.5	696.5	691.0	572.5	565.5	333.5	330.5	300.5	283.5	159.5	94.5	4.5	-62.5	-132.5	-152.5	-277.5	-369.5	-1059.5	1033696	673359
10920		1082	284	none	none	none 894.0	none 823.0	none	none	none	none	none	none	none	none	284.0	none	262.0	195.5	107.0	41.0	-35.0	-62.0	-210.0	-335.0	-1085.0	1040588	705456
10922		1064				094.0	023.0	819.5	742.0	598.0 764.0	595.0	475.0	467.0	210.5	207.0	166.0	148.0	28.0	-72.0	-165.0	-240.0	-318.0	-382.5	-553.5	-688.0	-1425.0	1016100	722901
11003	- menter and	905.0						-	733.0	612.0	606.0	639.0 492.5	631.0 485.0	372.0 255.0	370.0 251.0	331.0 219.0	314.0	196.0	102.5	7.0	-62.0	-143.0	-199.0	-376.0	-511.0	-1266.0	1034262	751721
11403	Ĩ.	1096			1				100.0	012.0	000.0	482.J	403.0	200.0	201.0	219.0	203.0	82.0 ND	11.0	-80.0 -367.5	-144.0	-219.5	-242.5	-375.5	-491.0	-1197.0	1021064	674250
12706	ISCO 7603	582	556							538.0	532.0	415.0	406.0	167.0	164.0	130.0	114.0	-3.0	-294.0	-307.5	-442.5	-514.5	-535.5	-676.0	-785.0	-1499.0	993762	669419
13700		873.0															-196.0	-306.0	-381.0		-550.0	-632.5	-669.0			-74.0	1016042 983464	691915
13841 13867		1070	1040	-	800.0	595.0	542.0	540.0	462.0	344.0	340.0	224.0	217.0	-16.0	-18.0		-68.5	-186.0	-244.0		-402.0	-480.5	-503.5	-640.0	-765.0	-1576.0	903404	685860 669380
13867		755 579.0	400			693.0	648.0	646.0	565.0	443.0	437.0	321.0	314.0	75.0	71.0	41.0	20.0	-102.5	-173.0	-265.0	-334.0	-412.0	-435.0	-382.0	-701.0	-1416.0	1007541	682003
13898	ISCO 7901	559.8	422 75.8							324.0	321.0	206.0	197.0	-48.0	-52.0	-94.0	-103.0	-203.5	-299.0	-395.0	-467.0	-544.0	-611.0	-788.0	-921.0	-1713.0	991106	705640
13950		1060	13.0	-												75.8	none	33.8	-40.2	-135.2	-204.2	-279.2	-311.0	-470.2		-482.2	1019666	697832
13979		960.0	904		697.0	526.0	477.0		386.0	273.0		155.0	149.0	80.0	-92.0	100.0	100.0	055.5		100.0	-374.0	-452.5	-477.0			-1505.0	1000868	671765
13980		930			769.5	556.0			423.0	300.0	297.5	181.0	174.0	-89.0	-92.0	-122.0	-139.0	-255.0	-316.5	-409.0	-479.0	-559.0	-584.0	-731.0	-856.0	-1591.0	991275	671665
14100	ISCO 6701	600.0	531.5							443.5	441.0	313.5	307.5	50.5	47.0	27.0	-102.3	-226.5	-192.5	-382.0	-450.0	-531.0	-557.5	-707.5	-827.0	-1565.0	993361	674705
14380		1005.0	985.3										501.0	00.0	47.0	21.0	_	-100.5	-192.5	-219.0	-346.5	-430.0	-480.5 -505.2	-646.5	-797.5	-835.6	1001026	699860
14479	7902-Sterling Disposal	590.0	480.2								-										555.1		-505.2			-14/0.0	998504	673867
14482	Dishosai	580.0 922.0	469.3 900			740.0	004.6				-	449.3	441.3	200.3	195.3	165.3	150.3	32.3								-6.7	1017650	692401
14498		600	300 +/-30			748.0	681.0	679.0	598.0	460.0	458.0	338.0	331.0	86.0	83.0	35.0	28.0	-85.0	-162.0	-255.0	-331.0	-405.5	-462.0	-627.0	-754.0	-1526.0	1007663	710380
			000 11-00																-436.0	-527.0	-604.0	-682.0	-770.0	-948.0	-1057.0	-1892.0	976281	707030

e, or ær	/eli	ion (ft	op amsi)			,				G	roup,	Forma	ation,	and M	embe	r Top	Elevat	ions (f	t amsl)							usl)	Well Lo Coordi	
API Well, Hole, Shaft Number	Alternate Well Identification	Surface Elevation (ft amsl)	Bedrock Top Elevation (ft amsl)	West Fails	Sonyea	Genesee	Genundewa LS	(btm Genundewa)	Moscow	Tichenor LS	Ludiowville	Centerfield LS	Skaneateles Levanna	Stafford LS	Marcellus	Onondaga	Tioga Bentonite	Bertie	Camillus Unit G	Syracuse Unit F	Syracuse Unit E	Syracuse Unit D	Vernon Unit C	Vernon Unit B	Vernon Unit A	Well Bottom Elevation (ft amsl)	Northing (ft)	Easting (ft)
14537		1077			861.0	632.0	579.0	497.0	497.0	383.0		261.0	254.5	24.0	21.0	-13.0	-26.0	-145.0	-203.0	-294.0	-363.0	-441.5	-464.0	-607.5	-732.0	-1505.0	1000074	668867
15051	ISCO 8001-C	727	702.6						702.6	660.6	652.6	533.6	526.6	293.6	290.6	258.6	241.1	1100								71.6	1000005	000507
15477	0001-0	570	133 +/-30						102.0	000.0	032.0	533.0	520.0	293.0	290.0	200.0	241.1	-311.0	-426.0	-514.0	-592.0	-669.0	-754.0	-932.0	-1086.0	-1902.0	1028395 978291	688537 707692
15592		872.0					603.5	600.0	522.0	396.0		275.0	267.0	32.0	29.0	-3.0	-21.5	-139.0	-204.0	-297.0	-367.5	-444.0	-468.5	-619.5	-745.0	-1471.0	1001200	678792
15593		895					617.0	615.0	534.5	416.0	409.5	268.5	285.5	50.5	244.5	16.5	8.5	-117.0	-180.0	-272.5	-341.5	-422.0	-446.0	-585.5	-703.0	-1428.5	1003385	676304
15726		865.0	844							466.0	461.0	344.5	336.0	102.0	98.0	68.0	48.0	-75.5	-142.0	-233.0	-300.0	-376.0	-399.0	-537.0	-663.0	-1387.0	1009116	678410
15727		820.0							678.0	552.0	549.0	432.0	425.0	189.0	188.0	156.5	138.5	14.0	-56.0	-149.0	-214.0	-290.5	-314.0	-455.0	-583.0	-1322.0	1015743	679880
15728		883.0							661.0	540.0	534.5	417.5	410.0	177.0	174.0	143.5	127.5	1.0	-65.0	-155.0	-220.5	-295.0	-322.5	-468.0	-686.5	-1303.0	1014212	676668
15737		1010.0																	-325.0	-415.0	-485.5	-566.0	-588.0	-732.5	-962.0	-1583.0	990155	669596
15784		920.0 910	845		795.0	580.0	532.0	530.0	450.0	330.0	324.0	208.0	201.0	-31.0	-33.0	-66.0	-81.0	-197.0	-260.0	-353.0	-420.0	-497.0	-527.0	-673.0	-793.0	-1497.0	995914	67536
15961		910 535.0	040											-			-12.0	-187.0	-255.0			-496.0	-518.5	-670.0	-785.0	-1502.0 481.5	997128 1014275	677304 691579
15965		538.0																								457.0	1014273	691529
15976		649.0	605					-									-8.0	-124.0	-198.5	-288.0	-359.0	-438.0	-470.5	-624.0	-742.0	-1480.0	1002413	686051
16073		700.0	643				583.0		491.0	375.0		251.0	244.0	10.0	7.0	-27.0	-45.0	-160.0	-231.0	-322.0	-395.0	-475.0	-501.0	-657.0	-771.0	-1487.0	1000795	685544
16079	ISCO HL1-81	632.0	594							532.0	529.0	408.0	402.0	163.0	159.0	128.0	111.5	-8.0	-81.0	-174.5	-241.0					-301.0	1016032	69154
16080	ISCO HL2-81	599.0								533.0	530.0	411.0	403.0	165.0	161.0	127.0	111.5	-7.0								-19.0	1016544	69182
16154		920	898			626.0	572.0		484.0	368.0		297.0	240.0	4.0	1.0	-27.0	-46.0	-164.5	-229.5	-320.0	-392.0	-471.0	-499.0	-637.0	-758.0	-1495.0	1000402	679357
16190		780												648.0	645.0	615.0	600.0	485.0	421.0	334.0	268.0	199.0	177.0	48.0	-55.0	-883.0	1062554	695526
16197		925												646.0	643.0	614.0	599.0	479.0	416.0	329.0	265.0	198.0	176.0	94.0	-33.0	-826.0	1062783	678389
16198		910						-	1000		_			12 14	223-128	12000		482.0	421.5				1.	17/76-532		-788.0	1048207	676821
16199		890														614.0	599.0	485.5	423.0	335.0	272.0	205.0	183.0	65.0	-41.0	-755.0	1062859	679173
17300 17301		920 840					-				1945 - 1849 - 1849 - 1849 - 1849 - 1849 - 1849 - 1849 - 1849 - 1849 - 1849 - 1849 - 1849 - 1849 - 1849 - 1849 -			632.0 661.0	629.0 658.0	596.0	581.0 614.0	466.0	400.0	316.0	251.0	182.0	158.0	41.0 77.0	-60.0	-822.0	1060767	678314
17301		920	0.00028	12.12	2000							854.0	847.0	623.0	618.0	625.0 588.0	572.0	482.0 451.0	435.0 387.0	349.0 298.0	285.0 233.0	218.0 166.0	194.0 145.0	28.0	-32.0 -70.0	-854.0 -818.0	1063085	68236
17304		920	908									845.0	837.0	613.0	611.0	580.0	563.0	444.0	378.0	298.0	233.0	157.0	134.0	18.0	-78.0	-832.0	1058140	67279
17306		920				-						819.0	812.0	583.5	580.0	547.0	534.0	415.0	349.0	262.0	199.0	128.0	108.0	-13.0	-116.0	-890.0	1056449	67833
17307		910	888		1.0							817.0	812.0	585.0	582.0	549.0	535.0	417.0	351.0	263.0	198.0	131.0	109.5	-7.0	-107.0	-913.0	1056042	67529
17309		930										812.0	804.0	578.0	575.0	543.0	526.0	408.5	343.0	256.0	191.0	123.0	101.0	-17.0	-113.0	-862.0	1055945	67163
17310		890				0.000								598.5	595.0	563.0	549.0	430.5	365.0	282.0	214.0	145.0	121.0	2.0	-105.0	-853.0	1057004	680375
17311		890.0												651.5	647.0	614.0		482.0	420.5								1060588	68233
17312		805												630.0	626.0	594.0	579.0	463.0	400.0			180.0	158.0	18.0	-72.0	-852.0	1060125	68452
17336		845														439.0	425.5	307.0	232.0	142.5	65.0	-8.5	-35.5	-190.0	-315.0	-1043.0	1047194	72730
17337		868.0	827.5									766.0	755.0	506.0	504.0	473.0	457.0	340.0	264.0	170.0	106.5	18.0	-8.0	-163.0	-286.0	-1025.0	1047648	73250-
17353		810												659.5	656.5	627.5	617.0	496.0	435.0	347.0	284.0	218.0	195.0	77.0	-34.0	-745.0	1059436	68454
17354		735												669.5	666.0	634.0	822.0	502.0	440.0	354.0	289.0	223.0	200.0	124.0	-40.0	-829.0	1063337	689475
17356 17357		925 890			10 10	-	-							645.0 638.0	642.0 634.5	611.5 602.0	588.0	473.5 469.0	413.5 407.0	321.0	256.0	189.0	166.0	47.0	-55.5	-816.0 -824.0	1061621 1061034	676073 68025
17357	I	890												030.0	034.3	557.0	0.000	469.0	364.0	278.0	256.0	149.0	125.5	47.0	-55.5	-824.0	1057926	683912
17368		930										806.0	801.0	572.5	569.5	537.0		405.4	342.5	255.0	189.0	120.0	97.0	-19.0	-120.0	-836.0	1054070	674301
17369		870										000.0	001.0	577.0	575.0	543.0	531.0	412.5	345.5	260.0	195.0	127.0	105.0	-16.0	-115.0	-896.0	1055598	682299
17370		730.0	686											629.0	627.0	595.0	582.0	464.0	400.0	314.0	250.0						1060182	68882
17371		905							2			799.0	791.0	563.5	560.5	528.5	514.0	394.5	331.0	246.0	180.0	112.0	91.0	-29.0	-132.0	-865.0	1054127	67879
17372		830										809.0	804.0	572.0	569.0			405.0	341.0	255.0	191.0	124.0	100.0	-23.0	-119.0	-906.0	1055405	68455
17373		870				-	1							537.5	534.5	504.0		373.0	306.0	215.0	152.0	82.0	59.5	-64.0	-165.0	-930.0	1051747	682422
17375		860						1				800.0	792.5	563.5	561.0	533.0	517.0	397.5	333.0	248.5	182.5	115.5	92.5	-28.0	-133.0	-896.0	1053632	683468
17377		920										778.0	771.0	542.0	538.0	507.0	493.0	473.0	309.0	223.0	158.0	90.0	66.0	-52.0	-162.0	-917.0	1051418	680052
17380		740	691											614.0	611.0	581.0	556.0	446.0	392.0	302.0							1060035	695020
17392		810																	312.0	225.5	157.5	78.0	51.0	-102.0	-218.0	-1042.0	1053918	727983

le, or ber	Vell	tion (ft	op amsi)		1				1	G	roup,	Forma	ation,	and M	lembe	r Top	Elevat	tions (I	ft amsl))	,		,			msl)	Well Lo Coordi	
API Well, Hole, o Shaft Number	Alternate Well Identification	Surface Elevation (ft ams!)	Bedrock Top Elevation (ft amsl)	West Falls	Sonyea	Genesee	Genundewa LS	(btm Genundewa)	Moscow	Tichenor LS	Ludiowville	Centerfield LS	Skaneateles Levanna	Stafford LS	Marcelius	Onondaga	Tioga Bentonite	Bertie	Camillus Unit G	Syracuse Unit F	Syracuse Unit E	Syracuse Unit D	Vernon Unit C	Vernon Unit B	Vernon Unit A	Well Bottom Elevation (ft amsl)	Northing (ft)	Easting (ft)
17399		800	784									-				>329	1			244.0	179.0	109.0	88.0	-37.0	-137.0	-912.0	1053762	685922
17400		820										768.0	763.0	530.5	527.0	497.0	482.0	362.5	300.0	212.0	147.0	76.5	55.0	-67.5	-170.0	-945.0	1051729	684767
17403		760																473.0	415.5	327.0	260.0	194.0	172.0	20.0	-67.0	-831.0	1061720	693130
17404		730					-							628.0	625.5	594.5	581.0	462.5	398.0	310.5	245.0	182.0	155.0	27.0	-80.0	-861.0	1060188	690801
17405		900		1				-				791.0	785.0	556.0	552.0	521.0	506.0	386.0	321.5	235.5	171.0	102.0	80.0	-42.0	-140.0	-875.0	1053282	681198
17406		725				-	-		-	-	-	-		665.0	662.0	630.5	618.0	500.0	438.0	350.0	285.0	219.0	196.0	71.0	-44.0	-825.0	1063557	691823
17408 17409		725			+	-	-					-								267.0	196.0	103.0	77.0	-71.0	-134.0	-855.0	1062055	728851
17409		815					-		-					1.1.1.1.1.1.1.1	-	-				252.5	181.0	98.0	70.0	-80.5	-175.5	-860.0	1058078	733099
17424		605	539	-		-		1	-	-	-	-				E22.0	640.0	000 4		251.0	180.0	84.5	54.5	-97.0	-141.0	-900.0	1064735	741536
17425		730	555	L			1			-		1		-	607.0	533.0 577.0	519.0 564.0	396.0 445.5	334.0 382.0	247.0	180.0	109.0	86.0	-41.0	00.0	-866.0	1058733	701197
17426		720	535					t			1	1			607.0	535.0	0.400	445.5	382.0	254.5	228.0 190.0	164.0	142.0 73.0	12.0	-89.0	-883.0	1059506	692878
17429		835				1	1	1	1		1	1				335.0		346.5	283.5	195.0	130.0	60.0	38.0	-26.0	-129.0	-887.0 -965.0	1055735 1049696	690480 683891
17430		795	757								1	-		521.0	517.0	497.0	472.0	350.0	287.0	241.0	136.0	67.0	45.0	-04.0	-193.5	-965.0	1049696	687073
17432		590.0														1	1		201.0	241.5	100.0	27.0	-6.0	-146.0	-263.0	-995.0	1031328	709662
17433		680	641											575.0	570.0	542.0	525.0	406.0	347.0	258.0	192.0	122.0	98.0	1 10.0	100.0		1058172	697520
17434		750	635		-									629.0	624.0	593.0	581.0	463.0	399.5		246.0	178.0	156.0	33.0	-78.0	-855.0	1059755	686923
17435		850	767						-			691.0	684.0	453.5	449.5	419.0	404.5	286.0	220.5	131.0	75.0	-3.0	-26.0	-151.0	-238.0	-1011.0	1045942	683002
17439		710	659									635.0	629.0	395.5	391.5	362.5	353.0	231.0	162.0	76.0	10.0	-60.0	-83.0	-224.0	-283.0	-1080.0	1041899	690012
17445		590	395	L			-	L	L								none				159.0	89.5	65.5	-63.0		-921.0	1056685	701687
17447		580	410				-	ļ				-			-		none				165.0	86.0	62.0	-70.0	-120.0	-912.0	1060439	705688
17452 17460	-	760						-		-										340.0	275.0	208.0	185.0	60.0	-47.0	-827.0	1061654	686084
17460		910 610	455					+					-		-		-	443.0	379.0	292.0	228.0	160.5	138.5	18.0	-86.0	-862.0	1059113	680658
17466		640	585							-	-	-	-			455.0	none	378.5	317.0	230.0	163.0	93.5	71.0			-920.0	1055580	699976
17467		700	505	-				-	-		· · · ·					529.0				055.0	174.0	104.0	82.0	-41.5		-935.0	1056179	698068
17503		860					1		i	-				667.0	663.0	633.0	614.0	497.5	438.0	255.0	187.2	121.5	99.0	-63.0	-131.0	-900.0	1056539	692877
17518		905			1		1		1					007.0	005.0	571.0	556.0	438.0	374.0	283.0	288.0 220.0	220.0	198.0 132.0	281.0	181.0 -90.0	-793.0 -884.0	1064419 1058370	681023 677912
17522		775.0	730											589.0	587.0	563.0	550.5	431.0	365.0	278.0	214.0	155.0	132.0	7.0	-90.0	-875.0	1058370	686031
17523		810	790	Conservation and					· · · · · · · · · · · · · · · · · · ·	. jilas				589.5	585.5	558.0	542.0	421.0	357.0	270.0	205.0	138.0	114.0	-15.0	-112.0	-927.0	1055583	686737
19408		900														548.0		417.0	351.0	264.0	200.0	132.0	108.0	-13.0	-113.0	-866.0	1055110	680462
19409		935											e-encerned			589.0	574.0	453.5	390.0	302.0	237.0	168.0	145.0	28.0	-74.0	-851.0	1059903	676807
19413		650	579					1.5	567.0			331.0	322.0	87.5	82.5	49.5	31.5	-85.0	-170.5	-260.5	-332.0	-410.0	-439.0	-592.0	-717.0	-1500.0	1005654	686613
19416		800	780		-	653.0	604.0	601.0	516.0	399.0	393.0	277.0	269.0	34.0	30.0	-1.5	-21.0	-140.5	-209.0	-300.0	-369.0	-447.0	-470.0	-620.0	-736.0	-1465.0	1003473	682406
19431		906								-	2 2 3			435.0	433.0	399.0	382.5	264.0	185.0	89.0	24.0	-66.0	-96.5	-253.0	-377.0	-1268.0	1042313	737225
19438		908												392.0	389.0	348.0	336.0	220.0	132.0	39.0	-32.0	-112.0	-159.0	-326.0	-451.0	-1267.0	1037100	738833
19609 19610		1400.0	1380			077 -	004.0				-			-			-				100.0	23.0	-0.5	-149.0	-226.0	-1002.0	999135	677189
19610		1065 1050			802.0	677.0	631.0	-	550.5	434.0	-	313.0	307.5	76.0	72.5	41.0	26.5	-92.0	-152.5	-243.0	-303.0	-385.0	-407.0	-540.5	-659.0	-1381.0	1005733	668774
19612	1	1050			883.0	667.0 674.0	614.0	620.0	535.0	420.0	440.0	298.0	291.0	63.0	60.0	28.0	11.0	-109.5	-172.0	-259.0	-326.0	-405.0	-428.0	-564.0	-638.0	-1475.0	1004242	670138
19612		725				0/4.0	622.0	620.0	538.0	423.0	419.0	302.0	295.0	65.0	61.0	30.0	12.0	-105.0	-166.0	-255.0	-324.0	-401.0	-424.0	-556.0	-678.0	-1408.0	1004604	671736
19633		910		-													-53.0	-171.0	-239.0		<u> </u>	-479.5	-503.0	-657.5		4465.5	1002043	684051
19679		1070			989.0	717.0	669.0		592.0	472.0		349.0	341.0	109.5	106.5	74.5	57.0	-62.0	-124.0	-215.0	-280.0	-444.0 -357.0	-467.5	-615.5	-637.0	-1483.0	1000460	677869
19685	ISCO 8601	~565	385		000.0		000.0		552.5	112.0		367.0	363.0	123.5	121.0	89.0	81.0	-62.0	-124.0	-215.0	-292.0	-357.0	-383.0 -396.0	-518.0 -551.0	-037.0	-1453.0 -587.0	1005437	670629 690790
20575		770	710									007.0	505.5	608.0	606.0	574.0	557.0	439.5	362.0	256.5	176.0	-368.0 96.0	-396.0	-551.0	-132.0	-587.0	1010646	731876
21406		895				500.5	443.0	440.5	363.5	222.5	219.5	103.5	96.0	-146.0	-149.0	-186.0	-204.5	-313.0	-391.0	-485.0	-556.0	-641.0	-688.5	-854.5	-989.0	-920.0	982363	685920
21508	Akzo 9401	555.2	20.6														none	-21.4	-113.4	-197.4	-270.4	-350.4	-386.4	-540.4		-579.4	1013275	696495
21509	Akzo 9406	561.4	67														none	-21.5	-101.5		2,0.1	000.4	000.4	VTV.4	i norma	-147.6	1012955	694044
21510	Akzo 9405	559.8	34.8															-37.2	-115.2					-		-160.2	1012206	694655
21511	Akzo 9404	560.1	31.3														none	-39.9	-121.4							-453.9	1011855	694555

e, or Xer	/eil on	ion (ft	op Ismsi)			-				G	roup,	Form	ation,	and M	embe	r Top	Elevat	ions (f	t amsl))						usl)	Well Lo Coordi	ocation nates**
API Well, Hole, Shaft Number	Alternate Well Identification	Surface Elevation amsi)	Bedrock Top Elevation (ft amsi)	West Falls	Sonyea	Genesee	Genundewa LS	(btm Genundewa)	Moscow	Tichenor LS	Ludlowville	Centerfield LS	Skaneateies Levanna	Stafford LS	Marcellus	Onondaga	Tioga Bentonite	Bertie	Camillus Unit G	Syracuse Unit F	Syracuse Unit E	Syracuse Unit D	Vernon Unit C	Vernon Unit B	Vernon Unit A	Well Bottom Elevation (ft amsl)	Northing (ft)	Easting (ft)
21513	Akzo 9402	553.4	35.1														none	-16.6	-97.6	-187.0	-260.0	-337.0	-368.9	-526.5		-531.6	1014837	697534
21514	Akzo 9411	560.6	48.6		· · · · · · ·													-30.4	-110.4	-204.4	-276.0		-382.4			-439.4	1012151	694252
21515	Akzo 9408	561.0	44.5															-37.5	-118.0							-141.0	1011904	694305
21516	Akzo 9409	560.4	41.4				Courses (1							-41.6	-120.6	-212.6						-277.6	1011753	694156
21520	Akzo 9414	558.4	45.4	L		1	2 0		-			-				-		-41.6	-115.6	-208.6						-279.6	1012002	694254
21522	Akzo 9416	557.8	37.8				-						-				none									-37.2	1011198	693960
21523	Akzo 9417	558.0	58.5		1997.00													-32.5	-111.0			6				-144.0	1012098	693552
21525	Akzo 9419/9419A	561.3	48.3			2									1			-39.2	-103.7				100000011			442.7	1011740	202205
21527	Akzo 9421	560.1	43.6			1	1	-				1	1	2.5	+#7	1 200		-42.4	-103.1							-143.7	1011749 1011598	693705
21530	Akzo 9424	552.4	52.4			1	-	1000	1								<u> </u>	-28.6	-102.1	1.1				-		-132.4	1011598	693857 694344
21531	Akzo 9425	561.0	52.5			1	1											-20.0	-116.0							-149.0	1012451	693757
21532	Akzo 9426	559.1	50.6			1		-			-		1			1.2.21		-40.4	-116.9	-209.4	-279.4	-357.4	-382.9			-418.9	1011647	693706
21533	Akzo 9427	560.4	44.4	1			1	1			-					-		-41.1	-118.6	-213.1	-286.1	-363.6	-390.6			-446.6	1011047	693641
21534	Akzo 9428	559.7	75.7		-							-						-38.8	-118.3	-215.1	-200.1	-303.0	-580.0			-192.3	1011391	693158
21539	Akzo 9433	558.4	30.4				1	1	1	1						-		-32.6	-110.5							-441.6	1012289	694624
21548	Akzo 9440	564.2	228				1	1	1	+			-				none	132.2	62.2	-32.3	-101.8	-174.8	-199.3	-346.3	-	-377.8	1012289	696392
21555	Akzo 9444	634.5	556.7			1			556.7	432.1	429.5	313.5	302.0	51.0	48.5	23.0	2.3	-107.5	-179.5	-279.0	-350.5	-432.1	-479.5	-641.1	-782.5	-792.5	1002888	700684
21556	Akzo 9445	559.8	114.8			1				102.1			002.0	01.0	10.0	20.0	none	22.8	-53.2	-1/3.0	-000.0	402.1	-473.0	-011.1	-702.5	-118.2	1017818	694222
21557	Akzo 9443	618.6	542.6						542.6	432.4	430.0	312.6	303.9	none	72.3	23.6	2.1	-105.9	-185.6	-277.2	-347.4	-428.4	-478.7	-644.6	-785.1	-796.4	1002712	700194
21558	Akzo 9442	888.3	863.3		863.3	711.9	651.7	649.3	567.6	432.3	428.6	312.8		63.3	60.3	19.8	2.5	-107.8	-187.2	-283.2	-357.7	-436.1	-488.0	-651.3	-794.3	-821.7	1003387	706305
04550	Akzo 9441/ 9441A*	700.6				0.55.0			+110000000		1-1-1-1												1					
21559 21561	Akzo 9446	559.1	655.6 79.1			655.6			581.9	448.1	445.8	327.6	317.6	79.6	74.6	39.0		-90.4	-171.4	-263.4	-327.6	-413.4	-448.8	-617.1	-757.9	-769.4	1006454	701690
21564	Akzo 9449	567.4	209.4					-				-	-				none							L		39.1	1011490	692982
21569	Akzo 9565	573.1	-176.9				<u> </u>					<u> </u>	-	90.4	87.4	49.4	32.4	-82.6	ł					-		-111.6	1005793	696836
21509	Akzo 9452	948.0	920		920.0	706.1	644.5	642.2	Cro.r	404.0	440.0	004.0	000.7	17.4	15.0	-186.4	-203.9	-304.9	-							-336.9	979373	710063
21572	Akzo 9453	875.6	920		845.6	740.2	681.8	042.2	558.5 598.3	421.6 462.5	419.3 460.9	304.0 343.1	292.7 334.4	47,4 93,9	45.9	3.9	-12.5 36.8	-122.5	-203.2	-294.9	-366.1	-451.2	-503.8	-672.0	-818.0	-832.0	1001913	709343
21573	Akzo 9459	889.9	854.9		854.9	713.2			569.2	402.5		313.2	306.9	65.1	92.2 63.3	55.6 22.3	36.8	-74.0	-156.7	-248.4 -281.8	-319.4	-402.4	-452.5	-616.7	-745.4	-773.2	1008382	706909
21574	Akzo 9454	967.2	935.2		935.2	754.1	692.7	691.1	608.9	471.9	469.9	352.5	340.6	94.8	93.2	57.1	37.4	-78.2	-186.6	-250.7	-356.7	-404.8	-487.6	-646.7 -635.0	-792.0	-829.4	1003398	706305
21575	Akzo 9455	1117.9	1083.9	1083.9	936.9	710.9	645.6	642.2	553.3	417.7		297.5	290.3	37.2	35.4	-1.1	-18.4	-128.1		-299.3	-310.5	-404.8	-459.7		-764.4	-803.8	1009527	714453
21576	Akzo 9456	934.5	904.5	904.5	881.2	661.5	593.4	591.1	500.3	365.5	362.5	247.2	238.4	-13.0	-15.0	-53.1	-70.8	-171.9	-205.9	-352.9	-425.5	-506.3	-523.7 -576.5	-695.0 -755.2	-835.5	-858.4	1001681	716432
21577	Akzo 9457	832.9	729.6	304.5	729.6	665.5	601.9	600.3	513.9	378.8	376.2	258.4	250.4	-13.0	9.0	-34.1	~10.0	-158.0	-246.1	-340.2	-425.5	-486.8	-5/0.5	-719.1	-901.1 -866.2	-920.7 -907.4	994746 996875	714598 706485
21578	Akzo 9458	919.0	891		891.0	701.4	640.2	638.4	554.1	418.9	416.5	297.9	289.7	39.3	36.0	6.8		-124.2	-205.0	-298.9	.369.7	-450.1	-498.7	-670.6	-821.1	-853.0	1000684	706450
21579	Akzo 9460	566.8	23.6		001.0	101.4	010.2	000.4	004.1	410.5	410.0	201.9	200.1	00.0	30.0	23.6	none	-124.2	-205.0	-230.9	,309,1	-450.1		-010.0	-021.1	-653.0	1000684	691636
21603	Akzo 9569	599.9	404.9										1			404.9	none	374.4						1		343.9	1054797	705785
21620	Akzo 9572	601.3	575.3					-						-		133.3	Tiond	17.3	-57.0	-148.0			-324.0	-479.0		-483.7	1017900	692198
61557	ISCO 7401	614.0			1				-	542.0	534.0	416.0	408.0	169.5	166.5	132.0	117.0	1		-140.0			-024.0	-13.0		34.0	1016545	691911
61558	ISCO 8202	595.0	571							540.0	537.0	418.0	410.0	171.5	168.0	135.0		1.0								-67.0	1016645	692061
61559	ISCO 8207	609.5								531.5	528.5	408.5	401.0	160.0	156.0	125.0	109.5	-10.0	-84.0							-145.0	1016144	691915
none	ISCO 6702	580.0	476						455.0	326.0	325.0	226.0	219.0	-66.0	-69.0	-94.0	-101.0	-207.5	-297.0	-392.0	-461.0	-544.0	-609.0	-787.0	-917.7	-942.0	991900	705000
none	ISCO 7403	634.0								535.0	532.0	412.0	496.0	168.0	164.0	130.0	115.0	207.0	201.0	001.0		0,1.0	000.0		- Such	-574.5	1016408	691496
none	ISCO 8208	582.5								533.5	530.5	411.5	403.5	161.5	118.0	129.5	112.0	-6.5	-83.0	-157.0						-174.5	1016393	691964
none	ISCO 8209	629.0					1.550			531.5	529.0	410.0	402.5	164.5	161.5	127.5	111.5	-5.0	-79.5					-		70.0	1016460	691570
none	ISCO 8210	596.0								537.0	534.0	415.0	407.0	169.0	164.5	134.0	116.0	-1.0	-75.0						1	-164.0	1016718	691889

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof, Sterling and Hampton Corners Mines in Livingston County, New York

63

Notes:

* The bottom of borehole 9441 is at -611.4. The hole was terminated due to loss of drill pipe. Alternate hole 9441(a) was cored beginning at -611.4.

** Northing and Easting are the distances north and east, respectively, from the origin of the NYS Plane Coordinate System.

APPENDIX C

SALT THICKNESS DATA FROM THE VERNON FORMATION (UNIT B)

fr.

Appendix C

Unit B and Unit B Salt Thickness Livingston County, New York

		ELEVATION (ft amsl)													THICKNESS (ft)						
API	Alternative	Vernon Fm		Salt		5 Salt	B-	4 Salt		3 Salt	B-2	2 Salt	B-1	Saft	Unit B	B-6 Salt	B-5 Salt	B-4 Salt		B-2 Salt	B-1 Salt
Well ID	Well ID	Unit B	top	base	top	base	top	base	top	base	top	base	top	base			o o oun	Dyour	DOGAN	D-2 Salt	D-1 Oall
	Dates f Fulles																				
01272	Retsof Fuller Shaft	-318.9	040.0	000.0																	
02206	Ghan	-464.6	-318.9 -464.6	-336.9	-366.9	-371.9	-398.9	-405.9	-408.9							18.0	5.0	7.0			
04053		-404.0	-464.6	-485.6 -693.0	none -774.5	-784.0	-531.6	-541.6	-544.6	-557.6	-561.6	-576.6	-579.1	-590.6	126.0	21.0	0.0	10.0	13.0	15.0	11.5
04069		-111.3	none	none		200408	-805.0	-818.0	-820.0	-838.0	-841.0	-855.0	-859.0	-869.0	194.0	18.0	9.5	13.0	15.0**	14.0	10.0
04089		-376.0	-376.0	-394.0	none -424.0	none -430.0	-165.3 -441.0	-173.3 -449.0	-176.3	-189.3	-199.3	-205.3	-212.3	-221.3	110.0	0.0	0.0	8.0	13.0	6.0	9.0
04117		-292.9	-292.9	-300.9	-432.9	-437.9	none	none	-452.0 -461.9	-471.0 -470.9	-469.0	-478.0	-486.0	-491.0	115.0	18.0	6.0	8.0	19.0	9.0	5.0
04129		-357.0	-357.0	-380.0	-408.0	-412.0	-422.0	-427.0	-431.0	-470.9	-472.9 -444.0	-485.9 -459.0	-488.9	-494.9	202.0	8.0	5.0	0.0	6.0**	13.0	6.0
04138		-367.0	-367.0	-378.0	-405.0	-408.0	-422.0	-427.0	-432.0	-441.0	-443.0	-459.0	-462.0 -455.0	-470.0 -470.0	113.0 103.0	23.0 11.0	4.0	5.0	11.0	15.0	8.0
04151		-341.0	-341.0	-363.0	-396.0	-401.0	-411.0	-418.0	-421.0	-434.0	-436.0	-444.0	-449.0	-457.0	16.0	22.0	3.0	5.0	9.0	7.0	15.0
04188		-632.0	-632.0	-652.0	-691.0	-696.0	-709.0	-720.0	-722.0	-736.0	-739.0	-753.0	-756.0	-766.0	134.0	20.0	5.0 5.0	7.0 11.0	13.0 14.0	8.0	8.0
04213		-295.2	-295.2	-320.2	-346.2	-351.2	-367.2	-376.2	-378.2	-388.2	-394.2	-408.2	-412.2	-421.2	126.0	25.0	5.0	9.0	10.0	14.0 14.0	10.0 9.0
04218		-59.5	-62.5	-67.5	-94.5	-101.5	-111.5	-119.5	-130.5	-144.5	-146.5	-159.5	none	none	113.0	5.0	7.0	8.0	14.0	13.0	0.0
04391 04495		-301.7	-301.7	-324.7	-354.7	-359.7	-369.7	-374.7	-377.7	-384.7	-386.7	-394.7	-396.7	-402.7	101.0	23.0	5.0	5.0	7.0	8.0	6.0
04495		-303.0	-303.0	-319.0	none	none	-357.0	-366.0	-369.0	-378.0	-385.0	-390.0	-392.0	-396.0	93.0	16.0	0.0	9.0	9.0	5.0	4.0
04552		-200.7	-280.7 -277.5	-298.7 -291.5	-327.7 -317.5	-332.7	-341.7	-346.7	-348.7	-360.7	-368.7	-376.7	none	none	96.0	18.0	5.0	5.0	12.0	8.0	0.0
05061		-210.0	-210.0	-230.0	-263.0	-324.5 -269.0	-334.5 -279.0	-343.5	-345.5	-351.5	-353.5	-360.5	-362.5	-369.5	92.0	14.0	7.0	9.0	6.0	7.0	7.0
10920		-553.5	-553.3	-577.0	-613.0	-209.0	-632.0	-290.0	-292.0	-305.0	-307.0	-322.0	-325.0	-335.0	125.0	20.0	6.0	11.0	13.0	15.0	10.0
10922		-376.0	-376.0	-391.0	-431.0	-438.0	-450.0	-642.0 -464.0	-645.0 -467.0	-657.0 -482.0	-660.0 -484.0	-675.5	-678.0	-688.0	134.5	23.7	7.0	10.0	12.0	15.5	10.0
11003		-375.5	-375.5	-393.0	-425.5	-431.5	-441.5	-450.0	-452.0	-466.5	-464.0	-500.0 -479.5	-503.0	-511.0	135.0	15.0	7.0	14.0	15.0	16.0	8.0
11403		-676.0	-676.0	-695.0			111.0	400.0	-452.0	-400.5	-400.0	-4/9.5	-482.5	-491.0	115.5 109.0	17.5 19.0	6.0	8.5	14.5	11.0	8.5
13867		-382.0	-582.0	-595.0	-631.0	-638.0	-647.0	-656.0	-658.0	-670.0	-672.0	-688.0	-690.0	-701.0	319.0	13.0	7.0	9.0	40.0	10.0	
13870		-788.0	-788.0	-806.0	-844.0	-851.0	-864.0	-875.0	-877.0	-893.0	-894.0	-908.0	-910.0	-921.0	133.0	18.0	7.0	11.0	12.0 16.0	16.0	11.0
13979		-731.0	-731.0	-751.0	-780.0	-785.0	-794.0	-803.0	-806.0	-829.0	-833.0	-848.0	-853.0	-856.0	125.0	20.0	5.0	9.0	23.0	14.0 15.0	11.0 3.0
13980	ISCO 6701	-707.5	-707.5	-730.5	-762.0	-766.0	-779.0	-787.0	-789.5	-800.0	-802.0	-810.0	-814.5	-827.0	119.5	23.0	4.0	8.0	8.0**	8.0	12.5
14100 14482	15000/01	-646.5	-646.5	-660.5	-712.5	-716.5	-734.5	-748.5	-751.5	-766.5	-769.5	-784.0	-787.0	-797.5	151.0	14.0	4.0	14.0	15.0	14.5	10.5
14402		-627.0 -948.0	-627.0 -948.0	-644.0 -971.0	-680.0	-687.5	-698.5	-708.5	-711.0	-725.0	-727.0	-742.5	-746.0	-754.0	127.0	17.0	7.5	10.0	14.0	15.5	8.0
14537		-607.5	-607.5	-621.0	-1010.0 -653.0	-1013.0 -659.5	-1026.0	-1029.0	-1032.0	-1034.0	-1036.0	-1045.0	-1047.0	-1057.0	109.0	17.0**	3.0	3.0	2.0	9.0	10.0
15477	1	-932.0	-932.0	-960.0	-995.0	-059.5	-671.5 -1016.0	-681.0 -1029.0	-684.0 -1042.0	-696.0	-698.5	-713.0	-721.5	-732.0	124.5	13.5	6.5	9.5	12.0	14.5	10.5
15592		-619.5	-619.5	-641.0	-672.5	-678.5	-689.5	-698.0	-700.5	-1065.0 -712.0	-1068.0	-1079.5	-1083.5	-1086.0	154.0	28.0	7.0	13.0	23.0	11.5	2.5
15593		-585.5	-585.5	-604.0	-635.0	-641.5	-652.5	-661.5	-664.0	-677.5	-714.0 -679.5	-731.0 -687.0	-734.5 -693.5	-745.0	125.5	21.5	6.0	8.5	11.5	17.0	10.5
15726		-537.0	-537.0	-558.0	-591.0	-597.5	-607.5	-617.0	-620.0	-631.5	-634.0	-647.0	-650.0	-703.0 -663.0	117.5 126.0	18.5	6.5	0.0	13.5	7.5	9.5
15727		-455.0	-455.0	-474.5	-508.0	-516.0	-528.0	-536.0	-538.0	-550.0	-552.0	-569.0	-571.5	-583.0	128.0	21.0 19.5	6.5 8.0	9.5	11.5	13.0	13.0
15728	1	-468.0	-468.0	-481.5	-515.0	-521.5	-531.5	-541.5	-545.0		002.0	-672.5	-675.5	-686.5	218.5	13.5	6.5	8.0 10.0	12.0	17.0	11.5 11.0
15737		-732.5	-732.5	-758.0	-884.0	-890.0	-908.0	-916.0	-918.0	-931.5	-934.5	-944.0	-951.0	-962.0	229.5	25.5	6.0	8.0	13.5	9.5	11.0
15784		-673.0	-673.0	-700.0	-724.0	-729.0	-732.0	-747.0	-750.0	-764.0	-770.0	-773.0	-785.0	-793.0	120.0	27.0	5.0	15.0	14.0	3.0	8.0
15961 15976		-670.0	-670.0	-709.0	-724.0	-728.5	-738.5	-744.0	-747.0	-757.5	-760.0	-770.0	-777.0	-785.0	115.0	39.0	4.5	5.5	10.5	10.0	8.0
16073		-624.0 -657.0	-624.0 -657.0	-643.0	-675.5	-682.0	-693.0	-701.5	-704.0	-715.0	-719.0	-728.0	-732.0	-742.0	118.0	19.0	6.5	8.5	11.0	9.0	10.0
16154		-637.0	-637.0	-683.0 -659.0	-709.0 -692.0	-715.0 -698.0	-723.0	-730.0	-732.0	-742.0	-744.0	-759.0	-761.0	-771.0	114.0	26.0	6.0	7.0	10.0	15.0	10.0
16190	1	48.0	48.0	38.0	18.0	13.0	-710.0 4.0	-717.0	-719.0	-730.0	-732.0	-747.0	-750.0	-758.0	121.0	22.0	6.0	7.0	11.0	15.0	8.0
16197		94.0	none	none	35.0	30.0	17.0	-4.0 12.0	-7.0 2.0	-21.0 -4.0	-23.0	-37.0	-46.0	-55.0	103.0	10.0	5.0	8.0	14.0	14.0	9.0
16199		65.0	none	none	38.0	33.0	22.0	10.0	8.0	-4.0	-8.0 -9.0	-20.0 -32.0	-24.0	-33.0	127.0	0.0	5.0	5.0	6.0	12.0	9.0
17300		41.0	none	none	12.0	6.0	-3.0	-13.0	-16.0	-27.0	-30.0	-32.0	-35.0	-41.0 -60.0	106.0 101.0	0.0	5.0	12.0	15.0	21.0**	6.0
17302		-597.0	none	none	none	none	-690.5	-698.0	-701.0	-711.0	-715.0	-719.0	-729.0	-737.0	140.0	0.0	6.0 0.0	10.0 7.5	11.0 10.0	2.0	26.0
17304		28.0	none	none	0.0	-3.0	-13.0	-23.0	-25.0	-41.0	-45.0	-59.0	-62.0	-70.0	98.0	0.0	3.0	10.0	16.0	4.0 14.0	8.0 8.0
17305	1	18.0	none	none	-8.0	-15.0	-25.0	-34.0	-36.0	-48.0	-52.0	-62.0	-69.0	-78.0	96.0	0.0	7.0	9.0	12.0	10.0	9.0
17306		-13.0	none	none	-44.0	-49.0	-60.0	-70.0	-74.0	-85.0	-87.0	-113.0	-114.0	-116.0	103.0	0.0	5.0	10.0	11.0	26.0	2.0
17307		-7.0	none	none	-36.0	-44.0	-55.0	-65.0	-67.0	-80.0	-87.0	-95.0	-99.0	-107.0	100.0	0.0	8.0	10.0	13.0	8.0	8.0
17309 17310		-17.0	none	none	-46.0	-54.0	-64.0	-73.0	-75.0	-87.0	-89.0	-103.0	-107.0	-113.0	96.0	0.0	8.0	9.0	12.0	14.0	6.0
17310		2.0 18.0	18 0	none 14.0	-33.0	-38.0	-48.0	-58.0	-61.0	-87.0	-91.0	-95.0	-99.0	-105.0	107.0	0.0	5.0	10.0	26.0	4.0	6.0
17336		-190.0	18.0 -190.0	-209.0	0.0 -243.0	-7.0 -249.0	-20.0	-28.0	-34.0	-46.0	-49.0	-57.0	-62.0	-72.0	90.0	4.0	7.0	8.0	12.0	8.0	10.0
17337		-163.0	-190.0	-209.0	-243.0	-249.0	-264.0	-268.0	-272.0	-284.0	-287.0	-301.0	-304.0	-315.0	125.0	19.0	6.0	4.0	12.0	14.0	11.0
17353		77.0	none	none	42.0	-221.0	-232.0 27.0	-243.5 18.0	-246.0 15.0	-257.0	-261.5	-273.0	-280.0	-286.0	123.0	20.0	6.0	11.5	11.0	11.5	6.0
17354		124.0	none	none	43.0	38.0	27.0	17.0	15.0	3.0 0.0	1.0 -2.0	-9.0	-30.0	-34.0	111.0	0.0	5.0	9.0	12.0	10.0	4.0
17357		47.0	none	none	17.0	10.0	-1.0	-11.5	-13.5	-25.0	-2.0	-30.0 -44.0	-33.0	-40.0	164.0	0.0	5.0	10.0	15.0	28.0	7.0
17358		4.0	none	none	-32.0	-40.0	-50.0	-61.0	-63.0	-72.0	-74.5	-44.0	-47.0	-55.5	102.5 99.5	0.0	7.0	10.5	11.5	17.0	8.5
17368		-19.0	none	none	-50.0	-55.0	-69.0	-75.0	-78.0	-89.0	-92.0	-106.0	-108.0	-120.0	101.0	0.0	8.0 5.0	11.0 6.0	9.0 11.0	12.0**	12.0
								0.0000000				100.0	100.0	120.0	101.0	0.0	5.0	0.0	11.0	12.0	12.0

Apper	Appendix C continues			ELEVATION (ft amsl)										ti Second concerne		THICKNESS (ft)			D 2 C-H C 4		
API	Alternative	Vernon Fm	8-6	Salt		Salt		Salt		Salt		Salt		Salt	Unit B	B-6 Salt	B-5 Salt	B-4 Salt	B-3 Salt	B-2 Salt	B-1 Salt
Well ID	Well ID	Unit B	top	base	top	base	top	base	top	base	-91.0	-104.0	-107.0	-115.0	99.0	2.0	8.0	11.0	13.0	13.0	8.0
17369		-16.0	-18.0	-20.0	-46.0	-54.0 -67.0	-63.0 -80.0	-74.0 -88.0	-76.0	-89.0 -102.0	-108.0	-122.0	-130.0	-132.0	103.0	0.0	3.0	8.0	11.0	14.0	2.0
17371 17372		-29.0 -23.0	none	none	-64.0	-64.0	-74.0	-83.0	-85.0	-96.0	-99.0	-111.0	-114.0	-119.0	96.0	0.0	3.0	9.0	11.0	12.0	5.0
17373		-64.0	none	none	none	none	-110.0	-119.0	-123.0	-133.0	-141.0	-148.5	-157.0	-162.0	101.0	0.0	0.0	6.0**	6.0**	7.5	5.0
17375		-28.0	none	none	-63.0	-71.0	-81.0	-90.0	-93.0	-117.0	-119.0	-129.0	none	none	105.0	0.0	8.0	7.2	24.0	10.0	0.0
17377		-52.0	none	none	-85.0	-94.0	-104.0	-114.0	-118.0	-128.0	-131.0	-149.0	-156.0	-162.0	110.0	0.0	9.0	10.0	10.0	18.0	6.0
17392		-102.0	-102.0	-115.0	-149.0	-154.0	-164.0	-172.0	-178.0	-190.0	-192.0	-205.0	-211.0	-218.0	116.0	13.0	5.0	8.0	12.0	13.0	7.0
17399		-37.0	-37.0	-44.0	-72.0	-78.0	-88.0	-98.0	-100.0	-115.0	-121.0	-125.0	-131.0	-137.0	100.0	7.0	6.0	10.0	15.0	4.0	6.0
17400		-67.5	-67.5	-72.0	-103.5	-109.0	-119.0	-129.0	-131.0	-139.0	-141.0	-145.0	-152.5	-170.0	102.5	4.5	5.5	10.0	8.0	4.0	17.5
17403		20.0	none	none	14.0	8.0	-1.0	-11.0	-14.0	-25.5	-27.5	-42.5	-52.0	-67.0	87.0	0.0	6.0	9.0**	11.5	15.0	15.0
17404		27.0	27.0	24.5	-8.0	-14.5	-24.5	-35.0	-36.5	-47.5	-49.5	-65.0	-70.0	-80.0	107.0	2.5	6.5	10.5	11.0	15.5	10.0
17405		-42.0	none	none	-75.0	-80.0	-89.0	-100.0	-103.0	-116.0	-117.0	-122.0	-130.0	-140.0	98.0	0.0	5.0	11.0	13.0	5.0	10.0
17406		71.0	64.0	62.0	39.0	34.0	24.5	17.0	12.0	0.0	-2.0	-24.0	-32.0	-44.0	115.0	2.0	5.0	7.5	12.0	22.0	12.0 7.5
17409		-80.5	none	none	none	none	-123.0	-134.0	-136.0	-147.0	-150.0	-165.0	-168.0	-175.5	95.0	0.0	0.0	11.0	11.0	15.0	1.5
17424		-41.0	none	none						00.0	05.0	75.0	70 0	00.0	101.0	0.0	4.0	9.0	12.0	10.0	11.0
17425		12.0	12.0	10.0	-14.0	-18.0	-39.0	-48.0	-50.0	-62.0	-65.0	-75.0	-78.0 -117.0	-89.0 -129.0	101.0 103.0	2.0 0.0	4.0 7.5	9.0	16.0	6.5	12.0
17426		-26.0	none	none	-61.5	-69.0	-78.5	-88.0	-90.5	-106.5 -71.0	-108.0 -73.0	-114.5	-93.0	-102.0	106.0	6.0	4.0	10.0	12.0	16.0	9.0
17428		4.0	4.0	-2.0	-33.0	-37.0	-47.0 -136.0	-57.0 -145.0	-59.0 -149.0	-71.0	-73.0	-178.0	-181.0	-193.5	109.5	4.0	6.0	9.0	12.0	10.0	12.5
17429		-84.0 -146.0	-84.0 -146.0	-88.0 -162.5	-120.0 -196.0	-126.0 -201.0	-136.0	-145.0	-222.5	-234.0	-238.0	-250.0	-253.5	-257.5	117.0	16.5	5.0	7.5	11.5	12.0	4.0
17432		33.0	-140.0	-102.5	-190.0	-13.0	-212.0	-34.0	-36.0	-49.0	-51.0	-62.0	none	none	111.0	0.0	7.0	10.0	13.0	11.0	0.0
17434 17435		-151.0	none	none	-175.0	-180.0	-190.0	-198.0	-200.0	-207.0	-211.0	-226.0	-229.0	-238.0	87.0	0.0	5.0	8.0	7.0	15.0	9.0
17439		-224.0	-224.0	-233.0	none	none	-255.0	-262.0	-268.0	201.0	211.0	-273.0	-279.0	-283.0	59.0	9.0	0.0	7.0			4.0
17445		-63.0	-63.0	-67.0	-93.0	none	200.0	-117.0							A 40000000	4.0					
17452		60.0	none	none	27.0	19.0	11.0	1.0	-1.0	-13.0	-15.0	-28.0	-38.0	-47.0	107.0	0.0	8.0	10.0	12.0	13.0	9.0
17460		18.0	18.0	15.0	-17.5	-22.5	-32.0	-42.0	-45.0	-55.0	-59.0	-74.0	-76.0	-86.0	104.0	3.0	5.0	10.0	10.0	15.0	10.0
17466		-41.5	-41.5	-49.0												7.5					
17467		-43.0	-43.0	-49.0	-69.0	-73.0	-84.0	-92.0	-95.0	-108.0	-111.0	-120.0	-123.0	-131.0	88.0	6.0	4.0	8.0	13.0	9.0	8.0
17503		281.0	none	none	256.0	250.0	241.0	232.0	230.0	216.0	213.0	194.0	191.0	181.0	100.0	0.0	6.0	9.0	14.0	19.0	10.0
17518		7.0	none	none			-37.0	-47.0	-49.0	-64.0	-66.0	-80.0	-83.0	-90.0	97.0	0.0		10.0	15.0	14.0	7.0
17523		-15.0	none	none	-45.0	-51.0	-61.0	-70.0	-72.0	-85.0	-95.0	-103.0	-105.0	-112.0	97.0	0.0	6.0 0.0	9.0	13.0 0.0	8.0 0.0	7.0
19408		-13.0	none	none	none	none	none	none	none	none	none	none	none	none	100.0 102.0	0.0 0.0	4.0	8.0	15.0	14.0	5.0
19409		28.0	none	none	-1.0	-5.0	-18.0	-26.0	-29.0	-44.0	-50.0	-64.0 -701.5	-69.0 -704.0	-74.0 -717.0	125.0	27.0	7.5	8.5	13.5	10.5	13.0
19413		-592.0	-592.0	-619.0	-648.5	-656.0	-664.0	-672.5 -690.0	-675.0 -693.0	-688.5 -706.0	-691.0 -709.0	-722.0	-724.0	-736.0	116.0	18.0	6.0	7.0	13.0	13.0	12.0
19416		-620.0	-620.0 -253.0	-638.0 -266.0	-667.0 -301.0	-673.0 -309.0	-683.0 -320.0	-331.0	-334.0	-348.5	-351.0	-364.5	-367.0	-377.0	124.0	13.0	8.0	11.0	14.5	13.5	10.0
19431		-253.0 -326.0	-253.0	-200.0	-380.0	-384.0	-398.0	-408.0	-410.0	-423.0	-429.0	-439.0	-443.0	-451.0	125.0	15.0	4.0	10.0	13.0	10.0	8.0
19438 19609		-149.0	-320.0	none	none	none	none	none	-206.0	-208.5	none	none	-221.0	-226.0	77.0	0.0	0.0	0.0	2.5	0.0	4.0**
19610		-540.5	-540.5	-563.0	-596.0	-603.0	-615.0	-623.5	-625.5	-637.0	-639.0			-659.0	118.5	22.5	7.0	8.5	11.5		
19611		-564.0	none	none	-614.0	-619.0	none	none	-634.0	-638.0	none	none	none	none	74.0	0.0	5.0	0.0	4.0	0.0	0.0
19612		-556.0	-556.0	-571.0	-611.0	-615.0	-628.0	-636.0	-638.0	-651.0	-653.0	-667.0	-669.0	-678.0	122.0	15.0	4.0	8.0	13.0	14.0	9.0
19633		-615.5	-615.5	-634.5												19.0					
19679		-518.0	-518.0	-532.0	-563.0	-570.0	-580.0	-589.0	-591.0	-604.0	-606.0	-613.0	-616.0	-637.0	119.0	14.0	7.0	9.0	12.0**	7.0	21.0
19685	ISCO 8601	-551.0	-551.0	-579.0											01	28.0	2723				
20575		-80.0	none	none	none	none	none	none	none	none	none	none	none	none	52.0	0.0	0.0	0.0	0.0	0.0	0.0
21406		-854.5	-854.5	-871.5	-910.5	-916.5	-930.5	-940.5	-943.5	-957.5	-960.0	-975.0	-977.5	-989.0	134.5	17.0	6.0	10.0	14.0	15.0	11.5 10.7
21555	Akzo 9444	-641.1	-641.1	-663.8	-706.6	-711.4	-728.1	-741.2	-742.4	-753.6	-755.2	-770.0	-771.8	-782.5	141.4	22.7	4.8	13.1 11.9	11.2 10.8	14.8 16.2	10.7
21557	Akzo 9443	-644.6	-644.6	-664.6	-709.0	-714.7	-729.8	-741.7	-743.8	-754.6	-755.8	-772.0	-774.4	-785.1	140.5 143.0	20.0 12.0	5.7 8.2	12.4	18.6	14.5	11.2
21558	Akzo 9442	-651.3	-651.3	-663.3	-708.3	-716.5	-730.7	-743.1	-744.9	-763.5	-765.9	-780.4	-783.1	-794.3	143.0	12.0	0.2	12.4	10.0	14.5	
	Akzo 9441	1000000000	10.02020432	0000000000			100000					705.0	700.0	740.0	440.0	24.4	7.1	11.6	13.9	15.0	11.2
21559	Akzo 9441A*	-617.1	-617.1	-638.2	-674.8	-681.9	-692.4	-704.0	-705.8	-719.7	-720.9	-735.9	-738.6	-749.8 -818.0	140.8 146.0	21.1 15.7	8.0	13.5	9.0	15.7	10.2
21571	Akzo 9452	-672.0	-672.0	-687.7	-742.0	-750.0	-761.0	-774.5 -701.4	-779.0	-788.0 -715.1	-789.3 -716.5	-805.0 -732.8	-807.8 -735.5	-745.4	128.7	18.7	6.9	12.0	8.3	16.3	9.9
21572	Akzo 9453 Akzo 9459	-616.7	-616.7	-635.4 -664.3	-670.5 -705.9	-677.4 -713.5	-689.4 -725.9	-701.4	-706.8 -739.3	-715.1	-763.6	-732.8	-735.5	-745.4	145.3	17.6	7.6	11.4	21.8	14.6	11.1
21573	Akzo 9459 Akzo 9454	-646.7 -635.0	-646.7 -635.0	-650.3	-705.9	-696.6	-725.9	-721.0	-722.7	-735.5	-736.8	-752.1	-755.3	-764.4	129.4	15.3	6.5	12.1	12.8	15.3	9.1
21574 21575	Akzo 9455	-635.0	-695.0	-722.0	-759.7	-767.4	-779.7	-791.1	-793.1	-804.8	-806.4	-823.1	-826.2	-835.5	140.5	27.0	7.7	11.4	11.7	16.7	9.3
21575	Akzo 9456	-755.2	-755.2	-777.5	-822.8	-830.9	-844.2	-856.9	-859.3	-870.1	-874.1	-888.7	-892.0	-901.1	145.9	22.3	8.1	12.7	10.8	14.6	9.1
21576	Akzo 9457	-719.1	-719.1	-736.4	-796.6	-800.5	-812.8	-821.6	-824.1	-835.3	-836.7	-855.3	-857.9	-866.2	147.1	17.3	3.9	8.8	11.2	18.6	8.3
	ISCO 6702	-787.0	-587.0	-609.0	none	none	-865.0	-873.0	-876.0	-879.0	-891.0	-905.0	-909.0	-917.7	130.7	22.0	0.0	8.0	3.0	14.0	8.7
none	ISCO 6702	-787.0	-587.0	-609.0	none	none	-865.0	-8/3.0	-876.0	-819.0	-891.0	-905.0	-909.0	-917.7	1 130.7	22.0	0.0	0.0	5.0	14.0	

Notes:

* The bottom of borehole 9441 is at -611.4. The hole was terminated due to loss of drill pipe. Alternate hole 9441(a) was cored beginning at -611.4.

** The B-3 salt unit in borehole 04053 is actually 2 separate units. There is no salt between the depths of 2207' and 2210'.

** The B-3 sait unit in borehole 04117 is actually 2 separate units. There is no sait between the depths of 1444' and 1446'.
** The B-3 sait unit in borehole 13980 is actually 2 separate units. There is no sait between the depths of 1735.5' and 1738'.

** The B-6 salt unit in borehole 14498 is actually 2 separate units. There is no salt between the depths of 1570' and 1576'.

** The B-2 salt unit in borehole 16199 is actually 2 separate units. There is no salt between the depths of -23' and -25'.

" The B-4 salt unit in borehole 17403 is actually 2 separate units. There is no salt between the elevations of -6' amsl and -7' amsl.

** The B-2 salt unit in borehole 17368 is actually 2 separate units. There is no salt between the elevations of -97 amsl and -99 amsl.

** The B-3 sait unit in borehole 17373 is actually 3 separate units. There is no sait between the elevations of -125' amsl and -127' amsl and between -128' amsl and -130' amsl.

Stratigraphy of the Devonian and Upper Silurian in the Vicinity of the Retsof. Sterling and Hampton Corners Mines in Livingston County, New York

67

1	A									
	Apper	ndix C cor	itinues							
			1			ELEVATION (ft ams	1)			1
- 1	API	Alternative	Vemon Fm	B-6 Salt	B-5 Salt	B-4 Salt	B-3 Salt	B-2 Salt	B-1 Salt	Unit

die

top

base

top

base

top

base

base

top

THICKNESS (ft) Unit B B-6 Salt B-5 Salt B-4 Salt B-3 Salt B-2 Salt E

base base top ** The B-4 salt unit in borehole 17373 is actually 2 separate units. There is no salt between the elevations of -114' amsi and -117' amsi.

** The B-1 salt unit in borehole 19609 is actually 2 separate units. There is no salt between the depths of 1623' and 1624'.

** The B-3 salt unit in borehole 19679 is actually 2 separate units. There is no salt between the elevations of -595' amsl and -596' amsl.

** The B-6 salt unit in borehole 14498 is actually 2 separate units. There is no salt between the depths of 1570' and 1576'.

top

** The B-4 salt unit in borehole 17302 is actually 2 separate units. There is no salt between the depths of 1619' and 1633'.

Well ID

Well ID

Unit B

APPENDIX D

SALT THICKNESS DATA FROM SYRACUSE FORMATION (UNIT D)

 $\frac{1}{2}$

Appendix D

Unit D and Unit D Salt Thickness Livingston County, New York

Identification Alternative Well ID Unit D top base top base top base 2206 -291.5 none none none none none none -317.5 26.0 0.0 0.0 0.0	Unit D Salt 0.0 43.0 30.5
2206 -291.5 none none none none none none none -317.5 26.0 0.0 0.0 0.0 0.0	43.0
	43.0
	43.0
3277 Livonia Shaft -277.0 none none -292.0 -295.0 -296.5 -321.0 -328.5 -344.0 67.0 0.0 3.0 24.5 15.5	
3305 -694.0 none none none none -698.0 -714.0 -734.0 -748.5 54.5 0.0 0.0 16.0 14.5	
4053 -431.0 none none none none -450.0 -474.0 -479.0 -495.0 64.0 0.0 0.0 24.0 16.0	40.0
4069 29.7 none none none none none none 7.2 22.5 0.0 0.0 0.0 0.0	0.0
4089 -226.0 none none none none none none none -247.0 21.0 0.0 0.0 0.0 0.0	0.0
4117 -244.9 none none none none none none none -270.9 26.0 0.0 0.0 0.0 0.0 0.0	0.0
4128 -213.0 none none none none none none none -233.0 20.0 0.0 0.0 0.0 0.0 0.0	0.0
4129 -203.0 none none none none -218.0 -223.0 none -233.0 30.0 0.0 0.0 5.0 0.0	5.0
4151 -191.0 none none none none none none none -211.0 20.0 0.0 0.0 0.0 0.0 0.0	0.0
4188 -392.0 none none none none -411.0 -436.0 -442.0 -458.0 66.0 0.0 0.0 25.0 16.0	41.0
4213 -122.2 none none none none none none -147.2 25.0 0.0 0.0 0.0 0.0 0.0	0.0
4218 77.5 none none none none none none none 55.5 22.0 0.0 0.0 0.0 0.0 0.0	0.0
4391 -165.2 none none none none none none -188.2 23.0 0.0 0.0 0.0 0.0 0.0	0.0
4495 -153.0 none none none none none none none -176.0 23.0 0.0 0.0 0.0 0.0	0.0
4531 -129.7 none none none none none none -154.7 25.0 0.0 0.0 0.0 0.0	0.0
4552 -132.5 none none none none none none -152.5 20.0 0.0 0.0 0.0 0.0 0.0	0.0
5061 -35.0 none none none none none none -62.0 27.0 0.0 0.0 0.0 0.0	0.0
10920 -318.0 none none none -337.0 -362.0 -366.0 -382.5 64.5 0.0 0.0 25.0 16.5	41.5
10922 -143.0 none none none -159.0 -177.0 -183.0 -199.0 56.0 0.0 0.0 18.0 16.0	34.0
11003 -219.5 none none none none none none -242.5 23.0 0.0 0.0 0.0 0.0	0.0
11403 -514.5 none none none none none none -535.5 21.0 0.0 0.0 0.0 0.0	0.0
13700 -633.0 none none none none none none -657.0 -668.0 35.0 0.0 0.0 0.0 11.0	11.0
13841 -481.0 none none none none none none none -503.5 22.5 0.0 0.0 0.0 0.0 0.0	0.0
13867 -412.0 none none none none none none -435.0 23.0 0.0 0.0 0.0 0.0 0.0 1.0 13870 -544.0 none none -564.0 -589.0 -595.0 -611.0 67.0 0.0 0.0 25.0 16.0	0.0
	41.0
	9.0
	0.0
	0.0 0.0
13980 -531.0 none -449.5 -460.5 -460.5 -480.5 50.5 0.0 0.0 11.0 14.0	25.0
14380 -567.7 none none none none none none none -595.2 27.5 0.0 0.0 0.0 0.0 0.0	0.0
14482 405.5 none none none 420.5 440.0 444.5 462.0 56.5 0.0 0.0 19.5 17.5	37.0
14498 -683.0 none none -704.0 -710.0 -718.0 -756.0 -757.0 87.0 0.0 6.0 30.0 15.0	51.0
14537 -441.5 none none none none none none none -464.0 22.5 0.0 0.0 0.0 0.0 0.0	0.0
15477669.0 -688.0 -695.0 -699.0 -701.0 -725.0 -733.0 -740.0 -754.0 85.0 7.0 2.0 8.0 14.0	31.0
15592 -476.0 none none none none none none none -500.5 24.5 0.0 0.0 0.0 0.0 0.0	0.0
15593 -422.0 none none none none none none -446.0 24.0 0.0 0.0 0.0 0.0 0.0	0.0
15726 -376.0 none none none none none none none -399.0 23.0 0.0 0.0 0.0 0.0 0.0	0.0
15728 -295.0 none none none none none none none -322.5 27.5 0.0 0.0 0.0 0.0 0.0	0.0
15737 -566.0 none none none none none none -588.0 22.0 0.0 0.0 0.0 0.0	0.0
15784 -497.0 none none none none none none -521.0 -527.0 30.0 0.0 0.0 0.0 6.0	6.0
15961 -495.5 none none none none none none -518.5 23.0 0.0 0.0 0.0 0.0	0.0
15976 -408.0 none none none none none -432.0 -441.0 33.0 0.0 0.0 0.0 9.0	9.0
16073 -475.0 none none none none -497.0 -501.0 none -501.0 26.0 0.0 0.0 4.0 0.0	4.0
16154 -471.0 none none none none none none none -499.0 28.0 0.0 0.0 0.0 0.0 0.0	0.0
16190 199.0 none none none none none none 177.0 22.0 0.0 0.0 0.0 0.0 0.0	0.0
16197 198.0 none none none none none none none 176.0 22.0 0.0 0.0 0.0 0.0 0.0	0.0

Appendix D continues

Appendix D continues															
				ELEVA									CKNESS		
API Well	Syracuse Fm	D-4 9	Salt	D-3	Salt	D-2 3	Salt	D-1 :	Salt	Unit D	D-4 Salt	D-3 Salt	D-2 Salt	D-1 Salt	Unit D Salt
Identification Alternative Well ID	Unit D	top	base	top	base	top	base	top	base						
16199	205.0	none	183.0	22.0	0.0	0.0	0.0	0.0	0.0						
17300	182.0	none	158.0	24.0	0.0	0.0	0.0	0.0	0.0						
17301	218.0	none	194.0	24.0	0.0	0.0	0.0	0.0	0.0						
17304	166.0	none	145.0	21.0	0.0	0.0	0.0	0.0	0.0						
17305 17306	157.0 128.0	none	134.0	23.0 20.0	0.0	0.0	0.0	0.0	0.0						
17307	131.0	none none	none	none none	none	none	none	none	108.0 109.5	20.0	0.0	0.0	0.0	0.0	0.0
17309	123.0	none	none	none	none	none none	none	none none	109.0	21.5	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0
17310	145.0	none	121.0	24.0	0.0	0.0	0.0	0.0	0.0						
17336	-8.5	none	-35.5	27.0	0.0	0.0	0.0	0.0	0.0						
17337	18.0	none	-8.0	26.0	0.0	0.0	0.0	0.0	0.0						
17353	218.0	none	195.0	23.0	0.0	0.0	0.0	0.0	0.0						
17354	223.0	none	200.0	23.0	0.0	0.0	0.0	0.0	0.0						
17357	189.0	none	166.0	23.0	0.0	0.0	0.0	0.0	0.0						
17358	149.0	none	125.5	23.5	0.0	0.0	0.0	0.0	0.0						
17368	120.0	none	97.0	23.0	0.0	0.0	0.0	0.0	0.0						
17369	127.0	none	105.0	22.0	0.0	0.0	0.0	0.0	0.0						
17371	112.0	none	91.0	21.0	0.0	0.0	0.0	0.0	0.0						
17372	124.0	none	100.0	24.0	0.0	0.0	0.0	0.0	0.0						
17373	82.0	none	59.5	22.5	0.0	0.0	0.0	0.0	0.0						
17375	115.5	none	92.5	23.0	0.0	0.0	0.0	0.0	0.0						
17377 17392	90.0 78.0	none	66.0	24.0	0.0	0.0	0.0	0.0	0.0						
17392	109.0	none none	none	none	none	none	none	none	51.0	27.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0
17400	76.5	none	none none	none none	none	none none	none none	none	88.0 55.0	21.0 21.5	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0
17403	194.0	none	172.0	22.0	0.0	0.0	0.0	0.0	0.0						
17404	182.0	none	155.0	27.0	0.0	0.0	0.0	0.0	0.0						
17405	102.0	none	80.0	22.0	0.0	0.0	0.0	0.0	0.0						
17406	219.0	none	196.0	23.0	0.0	0.0	0.0	0.0	0.0						
17408	103.0	none	77.0	26.0	0.0	0.0	0.0	0.0	0.0						
17409	98.0	none	70.0	28.0	0.0	0.0	0.0	0.0	0.0						
17422	84.5	none	54.5	30.0	0.0	0.0	0.0	0.0	0.0						
17424	109.0	none	86.0	23.0	0.0	0.0	0.0	0.0	0.0						
17425	164.0	none	142.0	22.0	0.0	0.0	0.0	0.0	0.0						
17426	102.5	none	73.0	29.5	0.0	0.0	0.0	0.0	0.0						
17428 17429	153.0 60.0	none	128.0	25.0	0.0	0.0	0.0	0.0	0.0						
17429	67.0	none none	none none	none	none	none none	none none	none	38.0 45.0	22.0 22.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
17432	27.0	none	-6.0	33.0	0.0	0.0	0.0	0.0	0.0						
17433	122.0	none	98.0	24.0	0.0	0.0	0.0	0.0	0.0						
17434	178.0	none	156.0	22.0	0.0	0.0	0.0	0.0	0.0						
17435	-3.0	none	-26.0	23.0	0.0	0.0	0.0	0.0	0.0						
17439	-60.0	none	-83.0	23.0	0.0	0.0	0.0	0.0	0.0						
17445	89.5	none	65.5	24.0	0.0	0.0	0.0	0.0	0.0						
17447	91.0	none	67.0	24.0	0.0	0.0	0.0	0.0	0.0						
17452	209.0	none	185.0	24.0	0.0	0.0	0.0	0.0	0.0						
17460	160.5	none	138.5	22.0	0.0	0.0	0.0	0.0	0.0						
17461	93.5	none	71.0	22.5	0.0	0.0	0.0	0.0	0.0						
17466	104.0	none	82.0	22.0	0.0	0.0	0.0	0.0	0.0						
17467 17503	121.5 220.0	none	99.0	22.5 22.0	0.0	0.0	0.0	0.0	0.0						
17503	153.0	none none	none none	none	none none	none none	none none	none	198.0 132.0	22.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
17523	138.0	none	114.0	24.0	0.0	0.0	0.0	0.0	0.0						
19408	132.0	none	108.0	24.0	0.0	0.0	0.0	0.0	0.0						
00.007				0000000000							0.0	0.0	0.0	0.0	0.0

Appendix D continues

API Well		Company Fra	D.44		ELEVA		D 0	0-14		0.11	THICKNESS						
Identification	Alternative Well ID	Syracuse Fm Unit D	D-4 stop	base	top	base	D-2		D-1	14 (19)	Unit D	D-4 Salt	D-3 Salt	D-2 Salt	D-1 Salt	Unit D Salt	
19409	Automative Weinib	168.0	none	none	none	none	top none	base none	top none	base 145.0	23.0	0.0	0.0	0.0	0.0	0.0	
19413	S	-410.0	none	none	none	none	none	none	-432.5	-439.0	29.0	0.0	0.0	0.0 0.0	0.0	0.0	
19416		-447.0	none	none	none	none	none	none	none	-470.0	29.0	0.0	0.0	0.0	6.5 0.0	6.5	
19431		-66.0	none	none	none	none	none	none	none	-470.0	30.5	0.0	0.0	0.0	0.0	0.0	
19438		-112.0	none	none	none	none	-129.0	-134.0	-141.0	-159.0	47.0	0.0	0.0	5.0	18.0	0.0 23.0	
19609		23.0	none	none	none	none	none	none	none	-0.5	23.5	0.0	0.0	0.0	0.0	0.0	
19610		-385.0	none	none	none	none	none	none	none	-407.0	22.0	0.0	0.0	0.0	0.0	0.0	
19611		-405.0	none	none	none	none	none	none	none	-428.0	23.0	0.0	0.0	0.0	0.0	0.0	
19612		-401.0	none	none	none	none	none	none	none	-424.0	23.0	0.0	0.0	0.0	0.0	0.0	
19619		-480.0	none	none	none	none	none	none	none	-502.0	22.0	0.0	0.0	0.0	0.0	0.0	
19633		-444.0	none	none	none	none	none	none	none	-467.5	23.5	0.0	0.0	0.0	0.0	0.0	
19679		-357.0	none	none	none	none	none	none	none	-383.0	26.0	0.0	0.0	0.0	0.0	0.0	
19685	ISCO 8601	-368.0	none	none	none	none	none	none	none	-396.0	28.0	0.0	0.0	0.0	0.0	0.0	
20575		96.0	none	none	none	none	none	none	none	67.5	28.5	0.0	0.0	0.0	0.0	0.0	
21406		-641.0	none	none	none	none	-658.0	-665.0	-669.0	-688.5	47.5	0.0	0.0	7.0	19.5	26.5	
21508	Akzo 9401	-350.4	none	none	none	none	none	none	-374.4	-386.4	36.0	0.0	0.0	0.0	12.0	12.0	
21513	Akzo 9402	-337.0	none	none	none	none	none	none	-357.9	-368.9	31.9	0.0	0.0	0.0	11.0	11.0	
21514	Akzo 9411	-356.9	none	none	none	none	none	none	none	-382.4	25.5	0.0	0.0	0.0	0.0	0.0	
21532	Akzo 9426	-357.4	none	none	none	none	none	none	none	-382.9	25.5	0.0	0.0	0.0	0.0	0.0	
21533	Akzo 9427	-363.6	none	none	none	none	none	none	none	-390.6	27.0	0.0	0.0	0.0	0.0	0.0	
21548	Akzo 9440	-174.8	none	none	none	none	none	none	none	-199.3	24.5	0.0	0.0	0.0	0.0	0.0	
21555	Akzo 9444	-432.1	none	none	none	none	-450.4	-456.8	-463.7	-479.5	47.4	0.0	0.0	6.4	15.8	22.2	
21557	Akzo 9443	-428.4	none	none	none	none	-445.9	-456.9	-463.9	-478.7	50.3	0.0	0.0	11.0	14.8	25.8	
21558	Akzo 9442	-436.1	none	none	none	none	-453.5	-465.2	-473.0	-488.0	51.9	0.0	0.0	11.7	15.0	26.7	
21559	Akzo 9441	-413.4	none	none	none	none	-428.0	-430.5	-438.7	-448.8	35.4	0.0	0.0	2.5	10.1	12.6	
21571	Akzo 9452	-451.2	none	none	none	none	-469.5	-480.6	-487.9	-503.8	52.6	0.0	0.0	9.3**	15.9	25.2	
21572	Akzo 9453	-402.4	none	none	none	none	-421.0	-429.4	-437.8	-452.5	50.1	0.0	0.0	8.4	14.7	23.1	
21573	Akzo 9459	-432.8	none	none	none	none	-451.5	-466.4	-474.4	-487.6	54.8	0.0	0.0	14.9	13.2	28.1	
21574	Akzo 9454	-404.8	none	none	none	none	-423.2	-436.4	-444.2	-459.7	54.9	0.0	0.0	13.2	15.5	28.7	
21575	Akzo 9455	-455.3	none	none	none	none	-474.5	-499.2	-507.2	-523.7	68.4	0.0	0.0	24.7	16.5	41.2	
21576	Akzo 9456	-506.3	none	none	none	none	-524.0	-553.0	-559.8	-576.5	70.2	0.0	0.0	29.0	16.7	45.7	
21577	Akzo 9457	-486.8	none	none	none	none	-505.6	-517.6	-525.2	-541.9	55.1	0.0	0.0	12.0	16.7	28.7	
21578	Akzo 9458	-450.1	none	none	none	none	-468.0	-475.3	-483.2	-498.7	48.6	0.0	0.0	7.3	15.5	22.8	
none	ISCO 6702	-544.0	none	none	none	none	-561.0	-586.0	-594.0	-609.0	65.0	0.0	0.0	25.0	15.0	40.0	

** The D-2 salt unit in borehole 21571 is actually 2 separate units. There is no salt between 473.5' bmsl and 475.3' bmsl.